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Abstract:  OPC (OLE for Process Control) is a mechanism for interconnecting process 
control applications running on Microsoft platforms.  It is layered on top of DCOM 
which in itself presents a wide range of security considerations.  OPC is defined in a 
series of specifications, although the best known and more widely implemented is the 
Data Access (DA) specification. 

We present a security analysis of the DA specification, identifying theoretical weaknesses 
that implementers should take into consideration when developing OPC clients and 
servers.  To validate our findings a vulnerability group test has been conducted against 
several OPC servers, discovering a number of previous unknown vulnerabilities.  

Although MSRPC services have been widely tested for security vulnerabilities, the tests 
have centered around the transport layer and not on the application layer that DCOM 
implements.  OPC testing revolves around the study of the protocol and the 
identification of weaknesses, identifying various new vulnerabilities in the process.  The 
main innovation in this paper is in analyzing DCOM from the interface point of view 
and automating discovery and testing of OPC servers. 
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1 Introduction 
OPC (OLE for Process Control) is a set of vendor-neutral specifications created by the 
OPC Foundation1 to facilitate the interoperation of process control products.  Of the 
various specifications produced by the Foundation, the “OPC Data Access” 
specification is the most widely known and implemented; this paper focuses on the 
“OPC Data Access 2.0” specification which will be referred to as “OPC” throughout 
the document. 

The Data Access specification defines a way to access heterogeneous devices in a 
control network through a common set of interfaces; this specification is proprietary to 
the OPC Foundation which makes it available to its members so that they can 
implement OPC-compliant client and servers.  The Foundation also makes available a 

                                                 
1 http://www.opcfoundation.org 
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redistributable package which includes the IDL description of interfaces, specifying the 
interfaces and methods that each client and server has to implement. 

The specification defines what functionality the clients and servers have to provide, but 
leaves up to the particular vendors the actual implementation of the interfaces.  The 
present document is a study of the potential weaknesses an OPC server implementation 
may present, based on the study of the interfaces it needs to implement, previous 
experiences and several server implementation reviews. 

Throughout the paper you will find that we describe potential vulnerabilities - after all, 
OPC is just the skeleton of what needs to be implemented and does not in itself contain 
any functionality that might lead to vulnerabilities.  The weaknesses reside in the way 
some implementations decide to provide the functionality; it is with implementers in 
mind that the paper is structured as a series of security considerations to take into 
account when developing OPC servers. 

2 Technology and Platforms 
To connect clients and servers, OPC uses DCOM (a technology for distributed inter-
process communications) which is in turn layered on top of MSRPC.  Both DCOM and 
MSRPC are Microsoft proprietary protocols so most of the developed servers run on 
the Windows platform, although solutions exist to implement OPC on other platforms2. 

Servers which implement the OPC DA v2.0 specification need to expose the following 
COM objects and interfaces: 

 

 
Figure 1 – OPC objects and interfaces 

 

The focus of this paper is on the application layer of OPC; vulnerabilities of DCOM or 
MSRPC have been widely studied before and fall outside the scope of this document. 
OPC authentication is provided at the DCOM layer, in the following sections it is 
assumed the user has permissions to access the applications. 

 
                                                 
2 See the “DCOM on Non-Microsoft Platforms” article on the OPC Foundation website 
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2.1 Server Fingerprinting 

Identification of a remote OPC server through the network is built into the protocol: 
when establishing a connection the client needs to know the remote CLSID, a unique 
identifier for a specific server version. 

The OpcEnum application, developed by the OPC Foundation and distributed with most 
servers, allows the remote enumeration of OPC servers running on a particular host. 
This application implements the IOPCServerList interface, whose GetClassDetails 
method returns for each OPC server its CLSID, along with the associated program id 
and a human readable description.  Access controls for OpcEnum are usually more 
relaxed than for OPC servers, as server enumeration is required for the dynamic 
discovery of servers and interfaces. 

After a client successfully connects to the server, it can obtain additional information by 
calling the GetStatus method of the IOPCServer interface.  This method returns the 
following server data: 

• Vendor information 

• Version and build number 

• Other information, such as current time, start time, server status, etc. 

As it is part of the protocol, fingerprinting of OPC servers is trivial – down to a level 
(software, version and build) which leaves no margin for error. 
 

 
Figure 2 – Remote server fingerprinting 

 

2.2 Server Handles 

Once a connection is established the communication between client and server flows 
through the sequential remote invocation of server methods; the server does not keep 
track of “states” the client is in, so there is a need for a client to obtain unique identifiers 
to items and groups so that it can refer to them in further communications with the 
server.  The handles speed up transactions as they can be used in place of string 
identifiers, which are expensive to parse and map to a particular group or item. 

An OPC handle is an arbitrary, unique, 32-bit identifier that the server associates with 
particular groups and items.  A client receives these identifiers after adding a new item or 
group (which is initially referred to using its full name) and is supposed to use the handle 
to further refer to the newly created element; for instance to write to a particular item 
the client needs to provide the item handle. 
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Servers usually store items and groups for a particular client as structures which are 
accessed using its memory address, a 32-bit value in the most common OPC platforms, 
so it is too tempting not to use the memory address of an item or group structure as the 
OPC handle.  This approach speeds up access to the structure and avoids the 
maintenance of a handle-structure mapping table.  In fact designers seem to have been 
indeed tempted, as most of the server implementations we reviewed used this technique. 

The major drawback to this approach is that server handles are used as input parameters 
in client calls and an attacker can easily modify them.  To protect the server address 
space integrity the server needs to verify the address location and type of client-provided 
server handles in each request, otherwise bad things can happen. 

2.2.1 DoS Through De-allocation of Invalid Addresses 

Calls to element deletion functions usually result at the server side with dynamically 
allocated memory being de-allocated using free() or a similar call.  If the server does 
not validate server handles passed to RemoveGroup, RemovePublicGroup or 
RemoveItems it might end up trying to free non-reachable addresses, causing the server 
to crash. 

2.2.2 Execution Through Dynamic Memory Corruption 

Building on the previous example, if the server is does not validate de-allocating 
arbitrary memory, chances are it can be used to modify the internal data structures of the 
dynamic memory allocator, allowing arbitrary writes that can be leveraged to run 
attacker-provided code on the server3. 

2.2.3 Execution Through Arbitrary Memory Writes 

Element removal functions are not the only functions that accept server handles as 
parameters.  Specifically, the item write function takes two parameters: an item handle 
and a value to write to it.  If the server maps handles to memory addresses and fails to 
validate a client-provided handle, the IO interfaces Write function allows an attacker to 
write any value to any memory address, a primitive which can be easily exploited to run 
arbitrary code on the server (e.g. through stack return addresses or SEH overwriting). 

Here is a summary of the functions that use server handles provided by the client which, 
if the server implementation is faulty, can be used to read/write arbitrary memory 
addresses: 

• IOPCItemMgt::SetActiveState 

• IOPCItemMgt::SetClientHandles 

• IOPCItemMgt::SetDataTypes 

• IOPCSyncIO::Read 

• IOPCSyncIO::Write 

                                                 
3 http://www.phrack.org/archives/57/p57-0x09 
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• IOPCAsyncIO::Read 

• IOPCAsyncIO::Write 

• IOPCAsyncIO2::Read 

• IOPCAsyncIO2::Write 

2.3 Classic Overflows 

OPC servers have to implement the body of the functions in the various interfaces they 
need to support.  These methods have to handle strings, arrays and other types prone to 
overflows, something which all developers might not be familiar with, so checking 
implemented methods which accept these types might uncover apparently hidden 
vulnerabilities. 

We have restricted the study to strings (the cornerstone of overflows) and integers (to 
find possible array index overflows) although a variety of other types might be as well 
considered.  To automate the analysis a fuzzer was constructed to feed different 
combinations of values to the methods that accept strings or integers as parameters.  
The tests were then tailored to specific protocol requisites, to minimize invalid tests. 

The handling of long strings does not seem to be a problem for the servers we reviewed, 
which also do not seem to be affected by “format string” vulnerabilities.  On the other 
hand we encountered unexpected results with the handling of integers, specifically in the 
handling of error messages. 

The GetErrorMessage method of the OPCServer interface accepts two integer 
parameters, one is the error number and the other allows the selection of the client 
“Locale ID”. 

The error number is a numeric value that identifies a particular error message, e.g. 1 for 
“Invalid parameter”, 2 for “Server disconnected”, 3 for “Unknown item”, etc. 

OPC supports the concept of “Locale ID”, an identifier of the language and regional 
settings that should be used when processing requests from a client.  It is most often 
used to return error messages in the appropriate language, but it also plays its part in the 
interpretation of client requests, such as in the format of strings or numbers.  The 
“locale ID” meaning assigned by Microsoft, a current list of ID mappings to actual 
locales can be found at http://www.microsoft.com/globaldev/reference/lcid-all.mspx. 

Our interest in this function is that, in its implementation, it is common to retrieve error 
messages from an array, indexed both by error number and by locale id, such as in the 
following code: 
 
  ... 
  int errno, lcid; 
  char *message = errorTable[lcid][dwError]; 
  ... 
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If the implementation does not do proper bounds checking on the error message ID or 
the locale, then it might be possible for an attacker to access arbitrary memory contents 
in the server as well as cause the server to crash by accessing unreachable memory. 

2.4 Configuration Persistence 

The OPC specification defines IPersistFile, an optional interface which can be 
implemented by those servers willing to give the remote client control over the server 
configuration. 

This interface is exposed so that clients can manage a server configuration exclusively 
through OPC, avoiding the need to use external protocols and interfaces, and it 
introduces, amongst others, methods to load and save the server configuration files.  
The configuration stored in these files is completely server dependent.  They are 
supposed to handle the backend configuration and do not store client group/item 
configurations or other temporary data. 

From the various methods defined in the interface, Load and Save are possibly the most 
interesting for an attacker.  Both methods accept a filename as their first parameter, 
something an attacker can use to make the server load the configuration from any file or 
to write the current configuration to disk.  Considering that the server usually uses the 
Win32 API (e.g. CreateFile) to access files, the network redirector can be used to 
read/write from network locations that the attacker controls(e.g.\\MACHINE\file.cfg). 

A number of methods can be leveraged by an attacker to conduct various attacks. 

2.4.1 DoS by Loading an Invalid Configuration File 

If the server discards the current configuration in favor of the one contained in a file 
provided by the attacker, and this file ends up being invalid, the server has to be able to 
fall back into the previous configuration.  Failing to do so might leave the server with no 
configuration, unable to answer legitimate clients requests.  Note that the attacker does 
not even need to provide a custom file, making the server load any well-known invalid 
configuration file (e.g. c:\boot.ini) might as well work. 

2.4.2 Execution by Loading a Specially Crafted Configuration File 

Configuration management is probably one of the more complex parts of software 
development: parsing a custom configuration format, allowing for hand-edited changes, 
being resilient to invalid entries in the file while continuing to properly load other 
sections, etc. 

Behind the task of loading the configuration is always a method that reads and parses 
the file, differing in complexity based on the configuration format, although it is always 
tricky to implement properly.  If the attacker is able to uncover a security problem in the 
parsing code, the Load method can then be used to load a specially crafted file which 
exploits the vulnerability.  This file can be hosted at a machine controlled by the attacker 
and simply loaded via a network redirector filename. 
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2.4.3 Download Server Configuration to a Remote Location 

The Write method also accepts a network path filename, so the current configuration 
can be downloaded onto a remote location. The attacker then has access to the server 
configuration, including any confidential information such as user credentials or network 
information that might be stored there.  This is often the case in OPC servers that act as 
gateways or concentrators for other protocols.  Furthermore, if the server has previously 
loaded an invalid file and keeps a reference to it, it might be possible to copy the file to 
the remote location by saving it there, e.g.: 

1. The attacker calls Load(“server_confidential_file.dat”) 

2. The server notes down its current configuration file is 
“server_confidential_file.dat” 

3. The server fails to load the configuration and returns an error 

4. The attacker calls Save(“\\MACHINE\destination.dat”) 

5. The server copies its current configuration file, 
“server_confidential_file.dat” to the destination of the save operation 

2.4.4 DoS by Overwriting a System File 

The easiest and more trivial denial of service attack forces the server to overwrite a 
system file with the current configuration using the Write method.  This could 
invalidate the overwritten file from properly loading in the future – e.g. make the server 
save the configuration file to the path of the executable file that provides the server 
functionalities; subsequently whenever the OPC server is invoked, it will not load and 
will therefore stop serving client requests. 

As the file is written using the server current credentials, the attack can be extended to 
write files in other machines that happen to trust the OPC server credentials, possibly 
into machines the attacker has no direct access to. 

Other methods from the IPersistFile interface include GetCurFileName, which 
returns the current path of the server configuration, allowing an attacker to gather 
information on the server environment, e.g. server drives and paths. 

Experimenting with server implementations, it seems that only a small percentage of 
servers implement this optional interface, although it is good to know if a particular 
server does implement it to add extra security measures. 

2.5 Type Conversions 

Items have an associated data type which defines what type of value they hold (integer, 
string, etc).  The opaque VARIANT type is used to simplify the number of methods 
each interface implements when data values are exchanged between clients and servers.  
The VARIANT type has a particular quality that allows it to hold various data types in 
itself (the VARIANT type is composed of a flag that indicates the data type it holds, 
along with the serialization of that value). 
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The use of VARIANT allows the specification to be simplified, providing just a single 
interface to read/write multiple types; there is no need to have separate operations to 
work on integers, operations to work on strings, etc. 

Although an item has an associated date type, the client can use different VARIANT 
types in method calls that work with that item, as the server will, in most instances, try 
and convert from one type to another.  In the event that types are not compatible, the 
server will signal so back to the client, which will need to retry the operation with the 
proper type. 

The Windows API provides a complete set of functions to work with VARIANT types, 
including functions to convert between different data types (VariantChangeType). 
These functions abstract the application from any serialization and validation, providing 
a high-level interface to VARIANT types.  This API is well known and tested, although 
some servers might choose not to use the standard API and implement custom 
VARIANT handling functions (for instance because only a small subset of data types are 
supported by the server, or because they need to keep a small memory footprint). 

Creating a custom implementation of the VARIANT type API is a complex and prone 
to errors task: serialization / deserialization, type conversions, conversions that behave 
differently based on the current locale, etc.  This complexity makes OPC type handling a 
likely spot where weaknesses could be introduced. 

Particular interest needs to be paid to the methods in charge of deserializing a provided 
VARIANT, as an attacker might decide to provide an invalid serialization or one that 
does not match the indicated inner type (e.g. using a string serialization for an integer 
type).  Also the more exotic types, such as VT_DISPATCH are rarely used, so their 
handling functions might not have been properly tested – at the very least conversions 
from such types to more standard types might prove tricky for the server. 

Methods to look for in these cases are those that allow a client to specify a particular 
VARIANT type, namely the data writing methods: 
  

• IOPCSyncIO::Write 

• IOPCAsyncIO::Write 

• IOPCAsyncIO2::Write 

2.6 Resource Starvation 

Availability is one of the main design principles in control system networks; data needs 
to be immediately accessible at all times.  Attacks on availability are usually targeted at 
making the server crash, although introducing non-deterministic delays in responses is 
another equally successful approach to service denial.  These delays can be caused by the 
starvation of server resources (usually network or CPU). 

An attack on the CPU usage is usually easier and requires fewer resources on the 
attacker side; the attacker only needs to identify CPU intensive methods provided by the 
server, such as the linear walk of huge lists or the parsing of complex structures.  OPC 
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servers offer various interfaces that, without the proper checks, can be used by an 
attacker to starve CPU resources: 

• The IOPCItemProperties interface is not optimized to access a large amount 
of item information.  Repeatedly calling its QueryAvailableProperties on 
different item IDs can increase CPU utilization. 

• The optional IOPCBrowseServerAddressSpace interface method 
BrowseOPCItemIDs can select items based on a client-provided filter.  
Although each server chooses how to interpret this filter format, there is a 
reference implementation that makes the filter format similar to that of the SQL 
LIKE operator. An unusually complex filter such as 
‘%%%%%%%%%%%%%’ can make the filtering function take a significant 
performance hit. 

Depending on the implementation of these functions the attacks can lead to increased 
memory consumption, resulting in out of memory errors that can ultimately crash the 
server.  Otherwise the attacks will increase usage during a period of time, after which 
operations will be back to normality. 

To prevent against these attacks clients can implement resource control limits for each 
client, along with timeout and client disconnection detection, so that only queries for 
legitimate clients will consume resources. 

2.7 Blob Poisoning 

Blobs are pieces of server-generated information that are sent along with item responses 
to the client.  A client is expected to send them back in further requests to the same item 
so that the server can speed up its processing.  In this respect blobs are similar to HTTP 
cookies, pieces of information that are reflected off the client just to maintain session 
state whose content the client does not need to understand. 

Blobs are exclusively used to improve server performance, by containing information 
(which is specific to each server) that allows for faster item lookup and response.  For 
instance, a server implementation might include as part of the blob a memory dump of 
the structure that holds item information, or information on when will the item be next 
updated, etc. 

Blobs differ from server handles in that a blob can handle an arbitrary amount of 
information and that their usage by both servers and clients are optional. 

A rogue client can modify the blob value before sending it back to the server, if the 
server does not check the integrity of the client response it can be misled to perform 
unexpected operations.  If the blob holds any kind of structure, the server will need to 
parse any incoming blob – again adding complexity that might lead to security 
weaknesses. 

Even if the structure is successfully parsed, its content can leave avenues open to attack. 
Take for instance a server blob that holds as part of its structure a memory pointer to an 
item value used in a Read / Write method.  It can be leveraged to read and write to 
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arbitrary memory, much in the same way as happened with sever handles.  In fact most 
of the attacks previously discussed on exploiting server handles are applicable to blobs. 

Methods that directly or indirectly accept blobs provided by a client are related to item 
management: 

• IOPCItemMgt::AddItems 

• IOPCItemMgt::ValidateItems 

Less than 5% of the servers we reviewed make an active use of blobs, so it does not 
seem to be a capability particularly popular with implementers. 

2.8 Client callbacks 

The OPC protocol defines the optional usage of client callbacks to improve 
performance and responsiveness; clients can register hooks for particular events (such as 
OnDataChange or OnReadComplete) and will receive a notification each time the server 
generates them, often as the result of an asynchronous read or write operation but also 
due to subscriptions to specific events. 

Callback objects are provided by the client implementation of IOPCDataCallback, 
IAdviseSink, IDataObject or IConnectionPoint; whenever the server encounters 
an event that has a registered callback it will use DCOM to instantiate the interface on 
the client and subsequently remotely call the instance method, reversing the roles of 
client and server - with callbacks the DCOM is used in a two-way communication. 

Although most of the risks associated with callbacks are client-side (and outside the 
scope of this document), the fact that the server uses DCOM to call the method on the 
client includes connection establishment and possibly authentication; depending on the 
server settings a client can force the remote server to authenticate before the callback, 
accessing user and server details (username, system name, domain…) and even 
authentication credentials. 

Also if the server uses a specific worker thread to notify various clients of event 
notification, a non-responsive rogue client could block the operation of the thread, 
possibly leaving other clients expecting notifications that will never arrive. 

3 Conclusions 
Our review of 21 sample OPC servers to validate our findings is not very comforting; 
over 20% of the tested applications present at least one of the weaknesses we have 
highlighted. 
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These are the results of our OPC server group test: 

Server handle poisoning 14.3% 

Overflows 9.5% 

Configuration persistence 14.3% 

Type conversions 4.8% 

Resource starvation 23.8% 

Blob poisoning 0,0% 

 

We believe these results are not acceptable, considering that these are applications with a 
critical job to do.  We have purposefully avoided analyzing the security of DCOM or 
MSRPC, which fall beyond the control of the OPC server vendor, and have focused in 
weaknesses that have its only source in faulty implementations, so there is no one else to 
blame.  Of particular interest are servers which, even though they detected memory 
access violations through exception handling, did nothing to stop the attacker from 
compromising the process address space. 

Of course, we can not generalize – most of the servers stood unaffected after our test 
runs, but the fact that we were able to crash that many servers with an automated tool 
opens up the question of what could be achieved in a more targeted attack. 

OPC server vendors need to go beyond the idea that DCOM security is handled by just 
setting DCOM permissions and take a more proactive approach towards security, 
embedding it in their development process and then verifying the security compliance of 
products and their resilience to attacks. 

 
_______________________ 
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