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Abstract:  This paper describes a defensive approach referred to as SCADA protocol 
obfuscation.  Such an approach counters network attacks which remotely exploit 
vulnerabilities in target SCADA systems through malicious messages structured in 
compliance with an actually used SCADA protocol.  SCADA protocol obfuscation is 
built in the form of a proactive structural intervention which we defined upon 
information provided by a new conceptual structure called attack requirements trees.  
An attack requirements tree is a structured means of providing conditions which must 
hold for a given attack to be feasible.  The root node of this tree is the attack itself, while 
each other node is an attack requirement.  We built the attack requirements tree for a 
SCADA protocol-based attack and identified a node whose denial could make such an 
attack unfeasible.  This node represents the requirement that attack messages should be 
built according to the SCADA protocol in use, therefore we decided to introduce 
diversity into a SCADA protocol in order to deny to the attacker the knowledge 
required for building correct attack messages.  While a strong cryptographic algorithm 
would accomplish this task, we had to investigate another solution as common SCADA 
field devices such as PLC's or RTU's have limited computational power.  Consequently 
they have considerable difficulties running strong cryptographic algorithms.  In this 
paper we propose SCADA protocol obfuscation as a candidate solution and describe it 
as applied to the Modbus TCP/IP protocol.     

Keywords:  SCADA security, attack requirements tree, SCADA protocol obfuscation, 
proactive intrusion prevention. 

1 Introduction  
SCADA systems rely on proprietary networks, communication protocols, hardware and 
operating systems.  Furthermore, SCADA used to have limited communication between 
its components and often dedicated communication channels were used.  Consequently 
such systems were thought of as not being subject to network attacks (Byres & Lowe, 
2004).  Nevertheless, SCADA networking has been evolving and the advent of low cost 
computing is leading companies into replacing their proprietary legacy hardware with 
modern more powerful devices.  The interconnectivity between SCADA devices is 
relatively high and often SCADA systems use public communication channels.  

SCADA systems are switching to Ethernet and TCP/IP networks, open standards such 
as DNP3, Modbus, IEC 60870-5, etc., and modern operating systems such as Windows 
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or Unix.  Research in this field has shown SCADA systems actually may suffer from 
various kinds of vulnerabilities in their data, security administration, architecture, 
networks, and platforms (Stamp, Dillinger, Young & DePoy, 2003). 

Attacks which remotely exploit arbitrary vulnerabilities in SCADA systems by sending 
malicious SCADA protocol messages represent a realistic threat to SCADA controlled 
critical infrastructure.  We sought a countermeasure to these SCADA protocol-based 
attacks by first devising a general model which we refer to as an attack requirements tree 
whose purpose is to identify the basic requirements needed by an attack to successfully 
reach one of its objectives.  The idea is to defend from an attack by denying one or 
more of its basic requirements without which such attack is not feasible.  Although in 
the case of the SCADA protocol-based attack the basic requirements tree are quite 
obvious, we are confident that such a structured means of providing attack requirements 
may be helpful by assisting in the identification of the actions to take when devising 
intrusion prevention techniques.   

We identified a lightweight dynamic scrambling method as an intervention candidate, 
which could deny a basic requirement of a SCADA protocol-based attack.  We built 
such a scrambling method upon a parallelism with techniques such as address space 
layout randomization and instruction set randomization used by an operating system to 
protect from exploitation of low-level coding vulnerabilities.  We experimented with this 
defensive approach as applied to the Modbus TCP protocol.  We chose Modbus as its 
specification is publicly available.  Furthermore there are publicly available Modbus 
implementations which may be run on publicly available embedded operating systems.      

This paper is organized as follows.  Section 2 is an overview of several models which 
like attack requirements trees provide a structured means for characterizing attacks, 
namely attack trees, fault trees and attack graphs.  Section 2 is also gives an overview of 
research findings which like SCADA protocol obfuscation use a scrambling scheme for 
the purpose of securing information sent over a network.  Section 3 gives an overview 
of the Modbus protocol which we used as a pattern protocol for applying our defensive 
approach, and defines what we are trying to protect SCADA devices from.  Section 4 
describes attack requirements trees, provides the attack requirements tree for a SCADA 
protocol-based attack and explains how attack requirements trees could be used as basis 
for building proactive intrusion prevention approaches.  Section 5 describes the SCADA 
protocol obfuscation approach and presents the motivations which led us to devise such 
a candidate solution.  Section 6 describes several techniques which we used to build a 
transformation scheme within SCADA protocol obfuscation.  Section 7 defines the 
advantages and disadvantages of SCADA protocol obfuscation.  Section 8 summarizes 
our findings and concludes the paper.  

2 Related Work 
Attack trees (Schneier, 1999) provide a structured means of defining a set of actions 
which lead to the achievement of an attack goal.  The root node of an attack tree 
represents the goal of an attack.  Such an attack goal may be achieved through different 
ways represented by the nodes which are children of the root node.  In general each 
child node in an attack tree is an attack subgoal and branches of the tree go down till no 
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further subgoals are possible.  A path from a leaf node to the root node is a way of 
performing the attack and consequently achieving the attack goal. The nodes of an 
attack tree may be AND nodes or OR nodes.  For achieving the goal represented by an 
AND node all its subgoals must be achieved, while for achieving the goal represented by 
an OR node at least one of its subgoals must be achieved.  Attack trees have been 
already employed as a systematic method for characterizing the security of SCADA 
systems.  

In (Balducelli, 2003; Balducelli, Vicoli & Jin, 2006) attack trees are used to formalize the 
propagation paths of attacks for the purpose of proposing a sort of reference language 
to model and implement attack and fault scenarios in SCADA, and to support an attack 
tool platform.  This also represents a formal strategy to elicit information about 
vulnerabilities in SCADA systems.  In (Byres, Franz & Miller, 2004) the attack tree 
methodology is applied to SCADA systems based on the Modbus protocol stack. 
Through attack trees the authors identify attacker goals and vulnerabilities in both 
specification and typical deployments of such SCADA systems.  (Convery, Cook & 
Franz) employ attack trees to describe possible vulnerabilities in the border gateway 
protocol.  A fault tree (U.S. Nuclear Regulatory Commission, 1981) is similar to attack 
trees.  The root node in a fault tree represents an undesired state and branches are ways 
which contribute to the undesired state.  An attack graph (Scheyner, 2004) is organized 
like attack trees or fault trees.  Nevertheless, an attack graph supports cyclic 
dependencies or merged states.  

Attack requirements trees which we describe in this paper are conceptually similar to 
attack trees, fault trees and attack graphs as all these paradigms provide a structured 
means for characterizing attacks.  But unlike attack trees, fault trees and attack graphs 
which reflect possible ways for achieving an attack goal, attack requirements trees 
provide the conditions for an attack to be possible.  Furthermore, attack trees, fault trees 
and attack graphs are generally used for identifying attacker goals and related 
vulnerabilities, while attack requirements trees are used for identifying possible proactive 
interventions which could prevent an attack from taking place.  In fact along with attack 
requirements trees in this paper, we propose SCADA protocol obfuscation or 
scrambling devised upon information held in an attack requirements tree.  To the best of 
our knowledge no mechanisms functionally similar to attack requirements trees have 
been proposed in the security literature to date, and this paper is the first to propose a 
structure which reflects the requirements of a defined attack.    

(Li, Ren, Ling & Liang, 2004) proposed a secure scrambling scheme to improve the 
physical layer built-in security of CDMA systems.  Scrambling in wireless networks was 
initially devised for reducing interference between mobile nodes.  Nevertheless, latter on 
scrambling was deemed adequate for adding security to the physical layer in such 
networks.  The scrambling scheme proposed by (Li et al., 2004) is constructed through 
AES operations and consists in adding a scrambling sequence to the chip-rate spread 
signal.  The performance cost of such a scheme is reported to be comparable to the 
performance of existing pseudo-random scrambling schemes used to secure the physical 
layer of CDMA systems.  Scrambling has also been employed to secure speech signals. 
(Del Re, Fantacci & Maffucci, 1989), for example, proposed a two-dimensional 
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scrambling algorithm implemented by digital signal processing techniques and a digital 
signal processor.  

The SCADA protocol obfuscation approach described in this paper is similar to the 
aforementioned research as it applies a scrambling scheme to secure information sent 
over a network.  Nevertheless, unlike the work described in (Li et al., 2004; Del Re et al., 
1989), which apply scrambling schemes at the physical layer of OSI stack, the SCADA 
protocol obfuscation scrambles information at the application layer.   

3 Preliminaries 

3.1 An Overview of the Modbus Protocol 

Modbus is an application layer messaging protocol which enables SCADA devices to 
communicate with each other in a master-slave fashion within possibly different types of 
buses and networks (Modbus Organization, 2004).  The Modbus protocol defines a 
Protocol Data Unit (PDU) independent of the underlying communication layers.  A 
PDU is composed of two fields, namely a function code field and a data field.  A 
function code field indicates to a slave what kind of action to perform.  A function code 
field is coded in one byte and valid values are in the rage of 1 to 255 in decimal 
representation.  A function code may come along with sub-function codes in order to 
define multiple actions.  There are 127 function codes which belong to one of the three 
categories defined by Modbus, namely public function codes, user-defined function 
codes, and reserved function codes.  A data field contains additional information such as 
register addresses, how many items are to be handled, or the number of bytes in the 
field, which slaves need to use in order to carry out the task specified by the function 
code.  Nevertheless, in some defined requests the function code alone is sufficient for 
the slave to perform the specified action, therefore in such requests the data field is of 
zero length.  

Modbus defines three PDUs; namely Modbus Request PDU which is a request message 
sent by a master to a slave during a transaction; a Modbus Response PDU which is a 
response message sent by a slave to a master during an error free transaction; and 
Modbus Exception Response PDU which is a response message sent by a slave to a 
master in a transaction where due to any reason the slave cannot handle the master's 
request.  The employment of Modbus on specific buses or networks introduces some 
more fields in addition to the PDU, thus creating a Modbus frame referred to as 
Application Data Unit (ADU). In Modbus TCP/IP (Schneider Automation, 2004) an 
ADU is composed of a common PDU and a header defined by Modbus Application 
Protocol (MBAP). The MBAP header contains a transaction identifier field which 
identifies a Modbus request/response transaction, a protocol identifier field which is 
used for intra-system multiplexing and identifies the Modbus protocol, a length field 
which is a byte count of the following fields, and a unit identifier field which is used for 
intra-system routing and identifies a remote slave connected on a serial line.     



SCADA Protocol Obfuscation  6 – 5  

3.2 Threat Model 

The defensive approach we discuss in this paper counters SCADA protocol-based 
attacks, i.e. attacks which remotely exploit any kind of vulnerability in SCADA systems 
by operating through malicious messages built according to the SCADA protocol in use 
by target SCADA devices.  In this context we define as a vulnerability also the lack of 
authentication as a consequence of which an attacker is able to send SCADA protocol 
messages to SCADA devices and succeeds in having them process such messages.  The 
SCADA protocol-based attack deployment strategy varies upon the offensive 
capabilities of an attacker and particular needs for specialized attack tools.  Nevertheless, 
such attacks are usually carried out either through a rogue device under the attacker's 
control or through a compromised SCADA field device.  In the former case an attacker 
introduces a rogue device in a SCADA link media and uses it as an attack launching 
platform while making it appear as a legitimate SCADA device of a defined type. 
Alternatively, an attacker may physically disable a legitimate SCADA device and replace 
it with a rogue device, which mimics the behavior of the legitimate SCADA device, but 
in the meantime carries out the attacks.  

SCADA protocol obfuscation is meant to protect a SCADA device from SCADA 
protocol-based attacks launched from a rogue device as described above.  An attacker 
could gain physical access to a SCADA device such as a remote terminal unit (RTU) or a 
programmable logic controller (PLC) and use this SCADA device to carry out SCADA 
protocol-based attacks.  We emphasize SCADA devices as potential victims of physical 
attacks considering that in reasonable SCADA deployments master stations and slave 
stations sit in highly secured rooms, therefore they may be considered as physically 
guarded. Nevertheless, we deem the defense from SCADA protocol based attacks 
launched from a compromised SCADA device falls within physical security competence. 
One of the most devastating SCADA protocol-based attacks consists in sending 
commands to SCADA devices, or corrupting a SCADA device with malicious response 
data.  SCADA protocol-based attacks could also consist in sending abnormal or already 
used packets to exploit protocol level vulnerabilities in design or implementation of a 
SCADA protocol deployed in target SCADA systems.  Further, by having target 
SCADA devices process malicious packets, an attacker could exploit low-level coding 
vulnerabilities such as stack-based buffer overflows, heap overflows, integer errors 
(integer sign errors and integer overflows), or format bugs in C/C++ implementations 
of a SCADA protocol. 

4 Attack Requirements Trees 
Intrusion prevention is often thought of as a combination of intrusion detection with 
intrusion response in this order.  An intrusion detection system works on various kinds 
of data depending on if it is host intrusion detection or network intrusion detection, 
analyzes such data applying some anomaly or misuse algorithm, and in the case it deems 
an attack is taking place, triggers an action to counter the possible attack. As even the 
best intrusion detection systems are subject to false negatives and false positives such an 
approach of building intrusion prevention does not prevent undetected attacks and can 
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generate massive responses to non-existent attacks.  Furthermore, the fact that response 
comes after detection could be a drawback, especially in process control systems. For 
instance, when attacks are detected with some delay due to computational costs or 
necessity to gather enough data before deciding whether a certain attack is taking place, 
the response may be activated too late to stop the attack from succeeding.     

While an intrusion detection system remains a valuable defense instrument, a 
functionally independent and dedicated intrusion prevention system could perform 
better in countering attacks to SCADA systems and could complement the overall 
defense capability of SCADA systems.  Along this line, intrusion prevention could be 
defined as a proactive structural intervention whose objective is to prevent an exploit 
from taking place (Bellettini & Rrushi, 2006).  The idea behind such a definition is to 
structure SCADA in such a way that offensive operations are blocked since their very 
first stage, i.e. they are not allowed to take place at all.  Thus, the defensive value 
provided by intrusion prevention designed in the form of a proactive structural 
intervention consists in prevention rather than response.  We devised a conceptual 
structure called attack requirements tree which serves as basis for building proactive 
intrusion prevention approaches.  An attack requirements tree is a structured means of 
providing conditions which must hold for a given attack to be feasible.  The root node 
of this tree is the attack itself, while each other node is an attack requirement.  

In this paper when we say that a node is true, we mean that the attack condition it 
represents holds.  Similarly, when we say a node is false, we mean that the attack 
condition this node represents does not hold.  With regard to the root node we say that 
this node is true if the attack it represents is feasible, and false if such attack is 
unfeasible.  Except for the root node, each other node in an attack requirements tree is 
qualified either as an AND node or an OR node.  Each node is true if all its AND 
children nodes (if any) are true, and at least one of its OR children nodes (if any) is true.  
For being able to carry out an attack such as a SCADA protocol-based attack, an 
attacker may be required to carry out successfully other support attacks such as breaking 
the physical security of a SCADA device, accessing a SCADA link media with a rogue 
device, sniffing a SCADA network, reverse engineering an unknown SCADA protocol, 
social engineering, etc.  Consequently the attack requirements tree for an attack may 
incorporate, in the form of subtrees, the attack requirements trees for other support 
attacks.  Thus, it may happen that an internal node in an attack requirements tree is true 
only if the root node of the attack requirements tree for some defined support attack is 
true. 

An intrusion prevention approach against a defined attack could consist in a proactive 
structural intervention which denies, i.e. forces to be false, an internal node in the attack 
requirements tree of this attack in such a way that the root node of this tree is forced to 
be false.  The arms race between defensive research and offensive research is reflected 
into efforts for forcing the root node to be false and true, respectively.  An attack 
requirements tree provides for building a multi-layered defense against entire attack 
categories.  As a matter of fact it is possible to force the root node to be false by denying 
several internal nodes in an attack requirements tree.   
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Figure 1 shows a sample attack requirements tree for a SCADA protocol-based attack.  
Dotted arcs denote subtrees which have not been included due to space limitations.  
From this tree we see that generally a SCADA protocol-based attack requires that the 
attacker transmits in the language of legitimate SCADA devices, i.e. that attack messages 
are fully compliant with the SCADA protocol which target SCADA devices are using 
for their communications.  

 

 
 

Figure 1 – An attack requirements tree for a SCADA protocol-based attack  

 

In order to be able to construct attack messages in compliance with the SCADA 
protocol that target devices are using, an attacker first must either know or find out the 
identity of such protocol.  Thus, an attacker is required to know whether the protocol in 
use is Modbus, DNP3, PROFIBUS, IEC 60870-5, etc., or a proprietary protocol, 
running over serial line or TCP/IP.  Furthermore, an attacker should know the protocol 
in use by target devices. In order for an attacker to acquire this knowledge the protocol 
specification should be accessible to him, otherwise the attacker should have the 
possibility to learn the protocol itself. In the case the protocol specification is not 
available to the attacker the protocol specification accessibility requirement implies that 
root nodes of attack requirements trees for other attacks such as for example social 
engineering or physical intrusion are true. Similarly, the requirement of the possibility to 
learn the protocol in use by target SCADA devices implies that the root nodes of attack 
requirements trees for attacks such as sniffing and protocol reverse engineering are true. 
In general sniffing and reverse engineering along with operational data are used to build 
targeted attacks (Finco, Lee, Miller, Tebbe & Wells, 2006). Just like any other network 
attack a SCADA protocol-based attack also requires that an attacker feeds attack 



 6 – 8 S4: SCADA Security Scientific Symposium  

 

messages to a target device, i.e. delivers through the network the attack messages to a 
target device. Such a requirement in turn requires that an attacker should either possess 
already physical access to a SCADA device, usually an IED considering that if an 
attacker controls a MS there is no need to carry out an attack, or the root node of the 
attack requirements tree of a physical attack against a SCADA device should be true. In 
alternative the root node of the attack requirement tree for the attack which consists in 
introducing a rogue device in the SCADA link media should be  true. Nevertheless, 
building attack messages in compliance with the protocol in use and delivering them to 
target SCADA devices is not sufficient for a SCADA protocol-based attack to be 
feasible. In fact due to any reason a target SCADA device could drop attack packets. 
Therefore, in order for the root node of the attack requirements tree given in (Figure 1) 
to be true target SCADA devices should process attack messages.  

Obviously the general attack requirements tree given in (Figure 1) could be further 
refined in front of relevant details of a defined SCADA environment and/or particular 
circumstances under which a SCADA protocol-based attack may be carried out, such as 
for example whether the SCADA network is wired or wireless, whether a default port is 
used for a defined protocol rather than custom ports, whether the operating system of 
SCADA devices provides for security including the physical one, whether the 
specification of a proprietary SCADA protocol is kept and handled securely, etc. There 
is a close relationship between attack trees and attack requirements trees. Most of the 
nodes in an attack requirements tree for a defined attack may be generated upon 
information contained in the attack tree of the aforementioned attack. On the other 
hand although attack requirements trees were designed to mainly provide the basis for 
proactive intrusion prevention approaches, they could help in assigning realistic 
difficulty values to several nodes in an attack tree. Furthermore, attack requirements 
trees complement attack trees in fully characterizing a given attack.    

5 SCADA Protocol Obfuscation  

5.1 The Approach  

Seeking inspiration from biology, (Forrest, Somayaji & Ackley, 1997) investigatated the 
possible advantages of diversity in computing systems, considering  that diversity is 
already a source of robustness in biological systems. (Forrest et al., 1997) followed 
several guidelines they devised for their ongoing research such as introducing diversity 
through randomization, introducing diversity in places that will be most disruptive to 
attacks, minimizing costs and preserving high level functionality.  They concluded that 
diversity is valuable, and it can contribute to the development of more robust and secure 
computing systems.   

SCADA protocol obfuscation is a proactive intrusion prevention approach which 
introduces diversity in the SCADA communication protocol employed by SCADA 
systems for supervisory and control.  SCADA protocol obfuscation aims at diversifying 
a SCADA protocol in such a way that the actual obfuscated protocol is unique for each 
single group of legitimate SCADA devices, and this while preserving the communication 
functionality of the SCADA protocol.  
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The SCADA protocol obfuscation approach consists of a reversible transformation of 
each frame of a given SCADA protocol according to a defined obfuscation algorithm. 
The obfuscation algorithm is to be shared between all legitimate SCADA devices in a 
communication group and its implementation is composed of four components, namely 
a transformation function, a key, a transformation scheme generator, and a key 
generator (Figure 2).  A transformation function obfuscates a regular SCADA protocol 
message into an obfuscated message or vice versa, i.e. deobfuscates an obfuscated 
message into a regular SCADA protocol message.   

A transformation function is built through protocol obfuscation techniques such as 
frame layout randomization and field set randomization described in Section 6 possibly 
complemented by additional optional techniques.  The logic of a transformation 
function optionally includes the use of a key generally when stream cipher scrambling 
(Section 6) is employed. The SCADA protocol obfuscation approach utilizes a 
transformation function which is intentionally simple in its functionality and 
implementable in a few lines of code. This is because a SCADA protocol obfuscation 
approach should require low computing power, a fact which as we will see latter in this 
section forms the basis of its very existence.     
 

 
 

Figure 2 – Conceptual organization of a SCADA protocol obfuscation module  
 
Due to its simplicity in both design and implementation, a transformation function 
provides an obfuscation scheme which is quite weak and whose breaking is just a matter 
of time.  One of the main ideas behind SCADA protocol obfuscation approach which 
aims at overcoming such a weakness is to enable Master Stations and Slave Stations to 
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employ a certain transformation scheme for obfuscating their SCADA protocol 
messages during a limited amount of time only, say t minutes.  After t minutes protected 
SCADA devices change the transformation scheme, thus for other s minutes they 
employ a different transformation function for obfuscating their SCADA protocol 
messages.  

A transformation scheme can be simple to the degree of resisting for the limited amount 
of time during which it is employed for obfuscating SCADA protocol messages.  
Furthermore, the transformation function depends on a series of variables whose 
modification allows for substantially changing the obfuscation scheme implemented by 
such a function.  The transformation scheme generator modifies the aforementioned 
variables each time a SCADA device needs to change obfuscation scheme.  

In the case the transformation function employs stream cipher scrambling (Section 6), 
the key could be continuously varied for the purpose of making it less easy for an 
attacker to derive the obfuscation scheme.  In our experiments, for example, we 
generated random key bytes by using an interface to the kernel's random number 
generator for each packet to be sent.  Thus, the fundamental idea is to vary two 
structural components, namely a transformation function and a possible key in order to 
compensate for weak obfuscation schemes.  Assuming an attacker will spend some time 
in breaking the obfuscation scheme and recovering the related key, if any, by the time he 
is prepared to attack the protected SCADA devices, it may have changed both the 
transformation scheme and the key.  

We extend the Modbus messaging service conceptual architecture (Schneider 
Automation, 2004) by introducing an additional module which implements the SCADA 
protocol obfuscation approach, namely a Modbus obfuscation module (Figure 3).  The 
Modbus client interface provides an interface to the user application to demand the 
creation of Modbus requests.  The Modbus client builds a Modbus request as specified 
by the user application and passes it to the Modbus obfuscation module.  The Modbus 
obfuscation module is an implementation of an obfuscation/deobfuscation algorithm 
and is responsible for obfuscating outgoing Modbus messages and deobfuscating 
incoming Modbus messages.  After receiving the Modbus request from the Modbus 
client the Modbus obfuscation module obfuscates it and returns it back to the Modbus 
client which passes it to lower layers for transmission.  The Modbus back-end interface 
is an interface from the Modbus server to the user application.  

The Modbus server waits for an incoming Modbus request on a certain TCP port.  The 
default TCP port for Modbus is 502.  Upon receiving an incoming Modbus request the 
Modbus server passes it to the Modbus obfuscation module.  The later deobfuscates the 
Modbus request and returns it to the Modbus server which in turn submits it to a 
Modbus PDU checking function.  The Modbus PDU checking function is responsible 
for verifying that a Modbus message is fully compliant with the Modbus protocol.  If the 
deobfuscated message is a valid Modbus message the Modbus server processes it and 
then possibly builds a Modbus response.  If the deobfuscated message is not a valid 
Modbus message it is dropped and not treated by the Modbus server at all.  If the 
Modbus server builds a Modbus response, such a response is first passed to the Modbus 
obfuscation module which obfuscates it and returns it back to the Modbus server which 
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in turn passes it to lower layers for transmission.  The obfuscation capability would be 
inserted into Modbus speaking devices with a set of functions that can be called by the 
Modbus client and Modbus server.  These functions will accordingly 
obfuscate/deobfuscate Modbus messages by calling the Modbus obfuscation module. 
 
 
 

 
 

Figure 3 – The Modbus Messaging Service Conceptual Architecture extended to 
include SCADA Protocol Obfuscation capability  
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5.2 Motivations Behind SCADA Protocol Obfuscation 

Our objective is to use the information held in the attack requirements tree of a SCADA 
protocol-based attack for the purpose of building a proactive intrusion prevention 
approach which could make such attack infeasible.  For this purpose we need a 
mechanism for denying the AND node in the attack requirements tree of a SCADA 
protocol-based attack which represents the condition that attack messages should be 
built according to the SCADA protocol in use by target SCADA devices.  A strong 
cryptographic algorithm would be ideal for such a task, definitely.  For instance, 
legitimate SCADA devices could use asymmetric cryptography to exchange a 
cryptographic key which they can use along with a symmetric cryptographic algorithm to 
encrypt all their SCADA protocol messages.  Although the key distribution in a SCADA 
network would have been an issue, strong encryption would have ensured that an 
attacker who does not know the encryption key would not be able to produce valid 
attack messages.  Furthermore, taking into account the strength of a cryptographic 
algorithm, SCADA devices would have been reasonably protected from SCADA 
protocol-based attacks.     

Nevertheless, the majority of SCADA field devices such as PLC's or RTU's have limited 
computational power, therefore such devices have noticeable difficulties in running 
strong cryptographic algorithms.  Furthermore, in some cases the kind of processor and 
the amount of main memory in a SCADA field device does not allow for running a 
strong cryptographic algorithm at all.  On the other hand SCADA communications 
should be real-time, therefore SCADA field devices are expected to carry out an action 
specified by a received request and send a response within a reasonable time fragment.  
We devised the SCADA protocol obfuscation approach to overcome such a problem, 
while accepting the fact that the cryptographic protection that may be provided by 
common processors in SCADA field devices is bounded, i.e. a cryptographic algorithm 
that can be run by SCADA field devices would have to be weak due to their limited 
computational power.  

The SCADA protocol obfuscation approach provides a simple scrambling of SCADA 
protocol frames and it requires little computational power, therefore it is quite 
affordable by the kind of processors along with the amount of main memory in 
common SCADA field devices.  This means that the “encryption” protection provided 
by SCADA protocol obfuscation will have to be weak, but we tried to deal with such a 
limitation to make it possible that such a weakness does not affect the robustness of the 
entire approach.  The idea to cope with weak “encryption” protection consists in 
enabling SCADA devices to use a defined scrambling scheme within a limited time 
interval only, after which these devices change it.  If an attacker will attempt to break a 
currently used scrambling scheme he will need some time to gather obfuscated protocol 
packets and analyze them.  As the scrambling scheme is continuously changed, when an 
attacker has broken a certain scrambling scheme the actual scrambling scheme may be 
another scheme different than the broken scheme.      

In the case of the SCADA protocol obfuscation approach, we may arguably talk about 
scrambling or obfuscation algorithm.  Arguably, we do not encrypt, we just scramble to 
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keep aggressors off for a limited amount of time and we change scrambling scheme 
from time to time in order to limit the exposure window of a scrambling algorithm that 
has been broken.  A SCADA protocol obfuscated through the approach described in 
this paper is intended to be unique for each group of legitimate SCADA devices, 
therefore an attacker who doesn't know the obfuscation scheme cannot produce valid 
messages.  Our choice of introducing diversity exactly in SCADA protocols is motivated 
by the fact that such protocols are among the main instruments that attackers could use 
to disrupt the underlying critical infrastructure monitored and controlled by SCADA 
systems.  Furthermore, each incoming message deobfuscated by legitimate SCADA 
devices equipped with obfuscation capability is checked for the purpose of verifying that 
it is fully in compliance with the SCADA protocol in use before being processed.  These 
checks lead to denial of the AND node in the attack requirements tree of a SCADA 
protocol-based attack which represents the condition that targets should process attack 
messages. 

6 SCADA Protocol Obfuscation Techniques 
In this section, the obfuscation techniques we employ in building a transformation 
function within the SCADA protocol obfuscation approach are described.  These 
techniques are described as applied to the Modbus TCP/IP protocol which has been a 
representative SCADA protocol for our general approach. 

6.1 ADU Layout Randomization  

ADU layout randomization was inspired by address space layout randomization (PaX 
Team; Bhatkar, DuVarney & Sekar, 2003; Xu, Kalbarczyk & Iyer, 2003) used by 
operating systems to counter attacks which exploit low-level coding vulnerabilities. 
Address space layout randomization consists in randomizing the base address of the 
memory area containing executable code, initialized data and uninitialized data, the base 
address of the memory area containing the heap, dynamic libraries, thread stacks and 
shared memory, the base address of the area containing the main stack, etc.  An attacker 
would find it difficult to build such an exploit while he does not know where certain 
process components are located in main memory.  If we build a parallelism between the 
address space of a given process and the Modbus ADU, and between process 
components and Modbus fields, we could follow the same approach by randomizing for 
example the order in which various Modbus fields are placed in an ADU (Figure 4).  
Generally the granularity at Modbus field level is not sufficient for building a robust 
transformation function.  Thus, ADU layout randomization could be extended at a 
granularity of, for example, two bytes also for the data field while conserving the 
functional integrity of some defined bytes, such as the high and low parts of various 
addresses present in the data field.   
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Figure 4 – Modbus TCP/IP request/response in A) an original layout and  

B) a randomized layout at the granularity of a Modbus field.  
 

6.2 Modbus Field Set Randomization 

Modbus field set randomization was inspired by instruction set randomization 
(Barrantes, Ackley, Forrest, Palmer, Stefanovic & Zovi, 2003; Kc, Keromytis & 
Prevelakis, 2003).  Instruction set randomization is a technique devised to counter code 
injection attacks and aims at destroying the usability of binary code injected into the 
address space of a protected process.  The main idea behind instruction set 
randomization consists in the creation of a randomized instruction set for each 
protected process.  These process specific instruction sets are kept secret from attackers. 
If an attacker carries out a code injection attack against a protected process and doesn't 
know the instruction set used by that process, then he does not know how to produce 
machine code according to the instruction set of the protected process and will end up 
with injecting invalid binary code.  We can build a parallelism between instructions in an 
instruction set used to talk to a machine and the Modbus fields used to talk to a Modbus 
device.  Moving along this line we can randomize the Modbus fields for the purpose of 
achieving several randomized Modbus field sets.  
 

Description Function Code Randomized Function Code 

Read coils 0x1 0x17 

Read discrete inputs 0x2 0x6 

Read holding registers 0x3 0x0B 

Read input registers 0x4 0x11 

Write single coil 0x5 0x2B 

Write single register 0x6 0x0F 

Table 1 – An example of function code randomization 
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Similarly, if an attacker does not know the Modbus field set used by a group of devices 
in a SCADA network he cannot produce valid attack messages.  The function code field 
for instance is suitable for being randomized (Table 1).  The same holds for sub-
function codes and error codes.  Similarly addresses, quantities, byte counts, register and 
output values, etc., in the data field could be randomized as well.  The transaction 
identifier could also help an attacker to identify the logic behind the transformation 
function as the value of this field in a request is simply copied into the corresponding 
response.  Such a field is to be randomized into two values where one is to be used by 
the client and the other one is to be used by the server. The same holds for the unit 
identifier field.  Furthermore, it is also necessary to masquerade some of the Modbus 
fields for the purpose of producing an acceptably resistant transformation function.  The 
protocol identifier field for example in Modbus is always zero filled.  If this field does 
not get masqueraded it will appear as 0x0000 in each Modbus message where evidently it 
is easily identifiable.  By masquerading the protocol identifier field, we mean setting it to 
an arbitrary value, which during de-obfuscation at the other end is to reset to zero.  The 
obfuscation algorithm however could use a single randomization map for all the fields to 
be randomized. 

6.3 Other Obfuscation Techniques 

In the case of Modbus requests where the data field is of zero length it may be much 
easier for an attacker to break the transformation function currently in use.  In fact in 
this case there are only 8 bytes in the Modbus ADU, 7 bytes of MBAP header + 1 byte 
of function code.  Thus, in such requests it may be constructive from the security point 
of view to pad the data field with randomly generated bits.  Furthermore, before 
applying ADU layout randomization it may be helpful to allocate one or two bytes 
between Modbus fields to be filled with random values.  For the purpose of deceiving 
an attacker and leading him to a wrong direction, it may be constructive from the 
security point of view to put on the communication link NULL Modbus requests and 
NULL Modbus responses, i.e. messages composed of randomly generated bits which 
cause no effect on the receiving SCADA device.  These NULL messages may cause 
confusion in the attacker's analysis and consequently delay a possible break of the 
transformation function currently in use.   

Another obfuscation technique which could be employed in the creation of a 
transformation function is stream cipher scrambling.  It consists in introducing random 
bits into a Modbus frame and XOR'ing determined Modbus fields with determined 
random bits.  Nevertheless, such a technique was considered too costly, therefore its 
employment is not always possible or advantageous.  

7 Pro’s and Con’s of SCADA Protocol Obfuscation 
The main advantage behind SCADA protocol obfuscation derives from the fact that it is 
a simple scrambling of SCADA protocol frames, consequently it requires little 
computational power.  Furthermore, such an approach is generally composed of simple 
operations.  The processors found in common SCADA field devices such as PLC's and 
RTU's along with the amount of main memory available in these devices can run a 
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reasonably structured instance of the SCADA protocol obfuscation approach.  For 
instance, a transformation function constructed as a combination of ADU layout 
randomization and Modbus field set randomization imposes a performance cost around 
0.8 % of the overall execution cost of a publicly available Modbus implementation in an 
embedded Linux operating system running on a processor emulator.  Under the same 
testing platform a transformation function constructed as a combination of ADU layout 
randomization, Modbus field set randomization, data padding, and insertion of random 
bits between Modbus fields imposes a performance cost of around 1.3 % of the overall 
execution cost.  Applying a granularity of two bytes also for the data field in the ADU 
layout randomization resulted in a performance cost between 1.4 % and 1.5 % of the 
overall execution cost. 

Often an master station is configured to periodically send commands, which are 
specified in a configuration file, to slave stations. In these cases the key generator and 
the transformation scheme generator components in slave stations prepare their 
intervention to the transformation function during the period of time between the 
moment a request has been fully processed and a possible response has been built and 
sent, and the moment a successive request is received.  Thus, generally only the cost of 
the transformation function weighs on the real time nature of the communication 
between SCADA devices. Furthermore, scrambling has some advantages with regard to 
intrusion detection as it reduces the time needed to “decrypt” an “encrypted” SCADA 
protocol packet for the purpose of analyzing it.   

SCADA protocol obfuscation tries to make proper use of the low level of cryptographic 
protection allowed by limited computational power in SCADA field devices.  In fact 
such an approach uses a certain transformation scheme only for a limited period of time, 
after which it changes transformation scheme.  Therefore a weak transformation scheme 
does not necessarily imply weak protection against SCADA protocol-based attacks. 

The main disadvantage of SCADA protocol obfuscation is that it considerably increases 
the network overhead in a moment when many SCADA networks have limited 
transmission capabilities.  Obfuscation techniques such as data padding or insertion of 
random bits between Modbus fields extend possibly small Modbus messages into a full 
253 bytes Modbus PDU.  Furthermore, each NULL Modbus request or NULL Modbus 
response alone puts on the SCADA link exactly 260 bytes of a complete Modbus TCP 
ADU plus the number of bytes introduced by lower layers in the OSI stack. As a 
consequence SCADA protocol obfuscation is more suitable in TCP/IP networks where 
network bandwidth is not a critical issue rather than in serial line networks.  

The application of a SCADA protocol obfuscation approach in the defense of SCADA 
devices from SCADA protocol-based attacks may be further constrained by the fact that 
many companies pay for each single byte of communication between their SCADA 
devices.  Such is the case for example when their master stations communicate with field 
devices over satellite which may be operated by external parties.    

SCADA protocol obfuscation does not add any value more than strong encryption does 
with respect to the high dependency on physical security in SCADA field devices.  As a 
matter of fact, a physical compromise of a SCADA field device would turn into true the 
value of the node in the attack requirements tree which SCADA protocol obfuscation 
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aims at denying.  An attacker may break the physical security of a slave station and carry 
out the attacks from there as the compromised PLC or RTU will obfuscate correctly the 
attack packets sent by the attacker.   

Furthermore, SCADA protocol obfuscation has its own critical point, i.e. the 
transformation scheme generator.  During our experiments we defined statically and 
randomly the periodic modifications to the transformation scheme.  It could be possible 
to derive the next transformation scheme to be used by protected SCADA devices based 
on information gathered from previous transformation schemes.  In this case the entire 
SCADA protocol obfuscation is considered broken.   

8 Conclusion  
In this paper we described a defensive approach, namely SCADA protocol obfuscation, 
to counter SCADA protocol-based attacks launched from a rogue device introduced in a 
SCADA network.  Such an approach was structured as a proactive structural 
intervention that we built upon information held by a new conceptual structure we 
described in this paper as well, and which we refer to as attack requirements tree.  This 
tree is a structured means of providing conditions which must hold for a given attack to 
be feasible, and each one of its nodes represents one of those conditions.  We built an 
attack requirements tree for a SCADA protocol-based attack and tried to make this 
attack unfeasible by using SCADA protocol obfuscation to deny the node which 
represents the requirement that attack messages should be built according to the 
SCADA protocol in use.  While a strong encryption algorithm could protect from 
SCADA protocol-based attacks much better, common SCADA field devices such as 
PLC's or RTU's have limited computational power and consequently are subject to 
considerable difficulties in running strong cryptographic algorithms.  

The SCADA protocol obfuscation approach provides a simple scrambling of SCADA 
protocol frames.  As a consequence such an approach requires little computational 
power and is quite affordable by the kind of processors and the amount of main 
memory found in common SCADA field devices.  Due to the simplicity in both design 
and implementation the transformation scheme in our approach is quite weak from a 
security standpoint.  In order to compensate for weak transformation schemes, SCADA 
protocol obfuscation provides the mechanism for changing a transformation scheme 
after a limited period of time.  We build simple transformation schemes through 
techniques such as ADU layout randomization and field set randomization following a 
parallelism with address space layout randomization and instruction set randomization, 
respectively.  These obfuscation techniques are actually complemented by data padding, 
field masquerading, insertion of random bits between Modbus fields, and when possible 
stream cipher scrambling for the purpose of strengthening the transformation scheme 
while remaining within the maximum possible level allowed by the limited 
computational power of SCADA field devices.   

_______________________ 
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