
 6 – 0 S4: SCADA Security Scientific Symposium

SCADA Protocol Obfuscation 6 – 1

SCADA Protocol Obfuscation: A Proactive Defense
Line in SCADA Systems

Carlo Bellettini and Julian L. Rrushi

Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39/41, 20135 Milano, Italy.
E-mails: {carlo.bellettini, julian.rrushi}@dico.unimi.it

Abstract: This paper describes a defensive approach referred to as SCADA protocol
obfuscation. Such an approach counters network attacks which remotely exploit
vulnerabilities in target SCADA systems through malicious messages structured in
compliance with an actually used SCADA protocol. SCADA protocol obfuscation is
built in the form of a proactive structural intervention which we defined upon
information provided by a new conceptual structure called attack requirements trees.
An attack requirements tree is a structured means of providing conditions which must
hold for a given attack to be feasible. The root node of this tree is the attack itself, while
each other node is an attack requirement. We built the attack requirements tree for a
SCADA protocol-based attack and identified a node whose denial could make such an
attack unfeasible. This node represents the requirement that attack messages should be
built according to the SCADA protocol in use, therefore we decided to introduce
diversity into a SCADA protocol in order to deny to the attacker the knowledge
required for building correct attack messages. While a strong cryptographic algorithm
would accomplish this task, we had to investigate another solution as common SCADA
field devices such as PLC's or RTU's have limited computational power. Consequently
they have considerable difficulties running strong cryptographic algorithms. In this
paper we propose SCADA protocol obfuscation as a candidate solution and describe it
as applied to the Modbus TCP/IP protocol.

Keywords: SCADA security, attack requirements tree, SCADA protocol obfuscation,
proactive intrusion prevention.

1 Introduction
SCADA systems rely on proprietary networks, communication protocols, hardware and
operating systems. Furthermore, SCADA used to have limited communication between
its components and often dedicated communication channels were used. Consequently
such systems were thought of as not being subject to network attacks (Byres & Lowe,
2004). Nevertheless, SCADA networking has been evolving and the advent of low cost
computing is leading companies into replacing their proprietary legacy hardware with
modern more powerful devices. The interconnectivity between SCADA devices is
relatively high and often SCADA systems use public communication channels.

SCADA systems are switching to Ethernet and TCP/IP networks, open standards such
as DNP3, Modbus, IEC 60870-5, etc., and modern operating systems such as Windows

 6 – 2 S4: SCADA Security Scientific Symposium

or Unix. Research in this field has shown SCADA systems actually may suffer from
various kinds of vulnerabilities in their data, security administration, architecture,
networks, and platforms (Stamp, Dillinger, Young & DePoy, 2003).

Attacks which remotely exploit arbitrary vulnerabilities in SCADA systems by sending
malicious SCADA protocol messages represent a realistic threat to SCADA controlled
critical infrastructure. We sought a countermeasure to these SCADA protocol-based
attacks by first devising a general model which we refer to as an attack requirements tree
whose purpose is to identify the basic requirements needed by an attack to successfully
reach one of its objectives. The idea is to defend from an attack by denying one or
more of its basic requirements without which such attack is not feasible. Although in
the case of the SCADA protocol-based attack the basic requirements tree are quite
obvious, we are confident that such a structured means of providing attack requirements
may be helpful by assisting in the identification of the actions to take when devising
intrusion prevention techniques.

We identified a lightweight dynamic scrambling method as an intervention candidate,
which could deny a basic requirement of a SCADA protocol-based attack. We built
such a scrambling method upon a parallelism with techniques such as address space
layout randomization and instruction set randomization used by an operating system to
protect from exploitation of low-level coding vulnerabilities. We experimented with this
defensive approach as applied to the Modbus TCP protocol. We chose Modbus as its
specification is publicly available. Furthermore there are publicly available Modbus
implementations which may be run on publicly available embedded operating systems.

This paper is organized as follows. Section 2 is an overview of several models which
like attack requirements trees provide a structured means for characterizing attacks,
namely attack trees, fault trees and attack graphs. Section 2 is also gives an overview of
research findings which like SCADA protocol obfuscation use a scrambling scheme for
the purpose of securing information sent over a network. Section 3 gives an overview
of the Modbus protocol which we used as a pattern protocol for applying our defensive
approach, and defines what we are trying to protect SCADA devices from. Section 4
describes attack requirements trees, provides the attack requirements tree for a SCADA
protocol-based attack and explains how attack requirements trees could be used as basis
for building proactive intrusion prevention approaches. Section 5 describes the SCADA
protocol obfuscation approach and presents the motivations which led us to devise such
a candidate solution. Section 6 describes several techniques which we used to build a
transformation scheme within SCADA protocol obfuscation. Section 7 defines the
advantages and disadvantages of SCADA protocol obfuscation. Section 8 summarizes
our findings and concludes the paper.

2 Related Work
Attack trees (Schneier, 1999) provide a structured means of defining a set of actions
which lead to the achievement of an attack goal. The root node of an attack tree
represents the goal of an attack. Such an attack goal may be achieved through different
ways represented by the nodes which are children of the root node. In general each
child node in an attack tree is an attack subgoal and branches of the tree go down till no

SCADA Protocol Obfuscation 6 – 3

further subgoals are possible. A path from a leaf node to the root node is a way of
performing the attack and consequently achieving the attack goal. The nodes of an
attack tree may be AND nodes or OR nodes. For achieving the goal represented by an
AND node all its subgoals must be achieved, while for achieving the goal represented by
an OR node at least one of its subgoals must be achieved. Attack trees have been
already employed as a systematic method for characterizing the security of SCADA
systems.

In (Balducelli, 2003; Balducelli, Vicoli & Jin, 2006) attack trees are used to formalize the
propagation paths of attacks for the purpose of proposing a sort of reference language
to model and implement attack and fault scenarios in SCADA, and to support an attack
tool platform. This also represents a formal strategy to elicit information about
vulnerabilities in SCADA systems. In (Byres, Franz & Miller, 2004) the attack tree
methodology is applied to SCADA systems based on the Modbus protocol stack.
Through attack trees the authors identify attacker goals and vulnerabilities in both
specification and typical deployments of such SCADA systems. (Convery, Cook &
Franz) employ attack trees to describe possible vulnerabilities in the border gateway
protocol. A fault tree (U.S. Nuclear Regulatory Commission, 1981) is similar to attack
trees. The root node in a fault tree represents an undesired state and branches are ways
which contribute to the undesired state. An attack graph (Scheyner, 2004) is organized
like attack trees or fault trees. Nevertheless, an attack graph supports cyclic
dependencies or merged states.

Attack requirements trees which we describe in this paper are conceptually similar to
attack trees, fault trees and attack graphs as all these paradigms provide a structured
means for characterizing attacks. But unlike attack trees, fault trees and attack graphs
which reflect possible ways for achieving an attack goal, attack requirements trees
provide the conditions for an attack to be possible. Furthermore, attack trees, fault trees
and attack graphs are generally used for identifying attacker goals and related
vulnerabilities, while attack requirements trees are used for identifying possible proactive
interventions which could prevent an attack from taking place. In fact along with attack
requirements trees in this paper, we propose SCADA protocol obfuscation or
scrambling devised upon information held in an attack requirements tree. To the best of
our knowledge no mechanisms functionally similar to attack requirements trees have
been proposed in the security literature to date, and this paper is the first to propose a
structure which reflects the requirements of a defined attack.

(Li, Ren, Ling & Liang, 2004) proposed a secure scrambling scheme to improve the
physical layer built-in security of CDMA systems. Scrambling in wireless networks was
initially devised for reducing interference between mobile nodes. Nevertheless, latter on
scrambling was deemed adequate for adding security to the physical layer in such
networks. The scrambling scheme proposed by (Li et al., 2004) is constructed through
AES operations and consists in adding a scrambling sequence to the chip-rate spread
signal. The performance cost of such a scheme is reported to be comparable to the
performance of existing pseudo-random scrambling schemes used to secure the physical
layer of CDMA systems. Scrambling has also been employed to secure speech signals.
(Del Re, Fantacci & Maffucci, 1989), for example, proposed a two-dimensional

 6 – 4 S4: SCADA Security Scientific Symposium

scrambling algorithm implemented by digital signal processing techniques and a digital
signal processor.

The SCADA protocol obfuscation approach described in this paper is similar to the
aforementioned research as it applies a scrambling scheme to secure information sent
over a network. Nevertheless, unlike the work described in (Li et al., 2004; Del Re et al.,
1989), which apply scrambling schemes at the physical layer of OSI stack, the SCADA
protocol obfuscation scrambles information at the application layer.

3 Preliminaries

3.1 An Overview of the Modbus Protocol

Modbus is an application layer messaging protocol which enables SCADA devices to
communicate with each other in a master-slave fashion within possibly different types of
buses and networks (Modbus Organization, 2004). The Modbus protocol defines a
Protocol Data Unit (PDU) independent of the underlying communication layers. A
PDU is composed of two fields, namely a function code field and a data field. A
function code field indicates to a slave what kind of action to perform. A function code
field is coded in one byte and valid values are in the rage of 1 to 255 in decimal
representation. A function code may come along with sub-function codes in order to
define multiple actions. There are 127 function codes which belong to one of the three
categories defined by Modbus, namely public function codes, user-defined function
codes, and reserved function codes. A data field contains additional information such as
register addresses, how many items are to be handled, or the number of bytes in the
field, which slaves need to use in order to carry out the task specified by the function
code. Nevertheless, in some defined requests the function code alone is sufficient for
the slave to perform the specified action, therefore in such requests the data field is of
zero length.

Modbus defines three PDUs; namely Modbus Request PDU which is a request message
sent by a master to a slave during a transaction; a Modbus Response PDU which is a
response message sent by a slave to a master during an error free transaction; and
Modbus Exception Response PDU which is a response message sent by a slave to a
master in a transaction where due to any reason the slave cannot handle the master's
request. The employment of Modbus on specific buses or networks introduces some
more fields in addition to the PDU, thus creating a Modbus frame referred to as
Application Data Unit (ADU). In Modbus TCP/IP (Schneider Automation, 2004) an
ADU is composed of a common PDU and a header defined by Modbus Application
Protocol (MBAP). The MBAP header contains a transaction identifier field which
identifies a Modbus request/response transaction, a protocol identifier field which is
used for intra-system multiplexing and identifies the Modbus protocol, a length field
which is a byte count of the following fields, and a unit identifier field which is used for
intra-system routing and identifies a remote slave connected on a serial line.

SCADA Protocol Obfuscation 6 – 5

3.2 Threat Model

The defensive approach we discuss in this paper counters SCADA protocol-based
attacks, i.e. attacks which remotely exploit any kind of vulnerability in SCADA systems
by operating through malicious messages built according to the SCADA protocol in use
by target SCADA devices. In this context we define as a vulnerability also the lack of
authentication as a consequence of which an attacker is able to send SCADA protocol
messages to SCADA devices and succeeds in having them process such messages. The
SCADA protocol-based attack deployment strategy varies upon the offensive
capabilities of an attacker and particular needs for specialized attack tools. Nevertheless,
such attacks are usually carried out either through a rogue device under the attacker's
control or through a compromised SCADA field device. In the former case an attacker
introduces a rogue device in a SCADA link media and uses it as an attack launching
platform while making it appear as a legitimate SCADA device of a defined type.
Alternatively, an attacker may physically disable a legitimate SCADA device and replace
it with a rogue device, which mimics the behavior of the legitimate SCADA device, but
in the meantime carries out the attacks.

SCADA protocol obfuscation is meant to protect a SCADA device from SCADA
protocol-based attacks launched from a rogue device as described above. An attacker
could gain physical access to a SCADA device such as a remote terminal unit (RTU) or a
programmable logic controller (PLC) and use this SCADA device to carry out SCADA
protocol-based attacks. We emphasize SCADA devices as potential victims of physical
attacks considering that in reasonable SCADA deployments master stations and slave
stations sit in highly secured rooms, therefore they may be considered as physically
guarded. Nevertheless, we deem the defense from SCADA protocol based attacks
launched from a compromised SCADA device falls within physical security competence.
One of the most devastating SCADA protocol-based attacks consists in sending
commands to SCADA devices, or corrupting a SCADA device with malicious response
data. SCADA protocol-based attacks could also consist in sending abnormal or already
used packets to exploit protocol level vulnerabilities in design or implementation of a
SCADA protocol deployed in target SCADA systems. Further, by having target
SCADA devices process malicious packets, an attacker could exploit low-level coding
vulnerabilities such as stack-based buffer overflows, heap overflows, integer errors
(integer sign errors and integer overflows), or format bugs in C/C++ implementations
of a SCADA protocol.

4 Attack Requirements Trees
Intrusion prevention is often thought of as a combination of intrusion detection with
intrusion response in this order. An intrusion detection system works on various kinds
of data depending on if it is host intrusion detection or network intrusion detection,
analyzes such data applying some anomaly or misuse algorithm, and in the case it deems
an attack is taking place, triggers an action to counter the possible attack. As even the
best intrusion detection systems are subject to false negatives and false positives such an
approach of building intrusion prevention does not prevent undetected attacks and can

 6 – 6 S4: SCADA Security Scientific Symposium

generate massive responses to non-existent attacks. Furthermore, the fact that response
comes after detection could be a drawback, especially in process control systems. For
instance, when attacks are detected with some delay due to computational costs or
necessity to gather enough data before deciding whether a certain attack is taking place,
the response may be activated too late to stop the attack from succeeding.

While an intrusion detection system remains a valuable defense instrument, a
functionally independent and dedicated intrusion prevention system could perform
better in countering attacks to SCADA systems and could complement the overall
defense capability of SCADA systems. Along this line, intrusion prevention could be
defined as a proactive structural intervention whose objective is to prevent an exploit
from taking place (Bellettini & Rrushi, 2006). The idea behind such a definition is to
structure SCADA in such a way that offensive operations are blocked since their very
first stage, i.e. they are not allowed to take place at all. Thus, the defensive value
provided by intrusion prevention designed in the form of a proactive structural
intervention consists in prevention rather than response. We devised a conceptual
structure called attack requirements tree which serves as basis for building proactive
intrusion prevention approaches. An attack requirements tree is a structured means of
providing conditions which must hold for a given attack to be feasible. The root node
of this tree is the attack itself, while each other node is an attack requirement.

In this paper when we say that a node is true, we mean that the attack condition it
represents holds. Similarly, when we say a node is false, we mean that the attack
condition this node represents does not hold. With regard to the root node we say that
this node is true if the attack it represents is feasible, and false if such attack is
unfeasible. Except for the root node, each other node in an attack requirements tree is
qualified either as an AND node or an OR node. Each node is true if all its AND
children nodes (if any) are true, and at least one of its OR children nodes (if any) is true.
For being able to carry out an attack such as a SCADA protocol-based attack, an
attacker may be required to carry out successfully other support attacks such as breaking
the physical security of a SCADA device, accessing a SCADA link media with a rogue
device, sniffing a SCADA network, reverse engineering an unknown SCADA protocol,
social engineering, etc. Consequently the attack requirements tree for an attack may
incorporate, in the form of subtrees, the attack requirements trees for other support
attacks. Thus, it may happen that an internal node in an attack requirements tree is true
only if the root node of the attack requirements tree for some defined support attack is
true.

An intrusion prevention approach against a defined attack could consist in a proactive
structural intervention which denies, i.e. forces to be false, an internal node in the attack
requirements tree of this attack in such a way that the root node of this tree is forced to
be false. The arms race between defensive research and offensive research is reflected
into efforts for forcing the root node to be false and true, respectively. An attack
requirements tree provides for building a multi-layered defense against entire attack
categories. As a matter of fact it is possible to force the root node to be false by denying
several internal nodes in an attack requirements tree.

SCADA Protocol Obfuscation 6 – 7

Figure 1 shows a sample attack requirements tree for a SCADA protocol-based attack.
Dotted arcs denote subtrees which have not been included due to space limitations.
From this tree we see that generally a SCADA protocol-based attack requires that the
attacker transmits in the language of legitimate SCADA devices, i.e. that attack messages
are fully compliant with the SCADA protocol which target SCADA devices are using
for their communications.

Figure 1 – An attack requirements tree for a SCADA protocol-based attack

In order to be able to construct attack messages in compliance with the SCADA
protocol that target devices are using, an attacker first must either know or find out the
identity of such protocol. Thus, an attacker is required to know whether the protocol in
use is Modbus, DNP3, PROFIBUS, IEC 60870-5, etc., or a proprietary protocol,
running over serial line or TCP/IP. Furthermore, an attacker should know the protocol
in use by target devices. In order for an attacker to acquire this knowledge the protocol
specification should be accessible to him, otherwise the attacker should have the
possibility to learn the protocol itself. In the case the protocol specification is not
available to the attacker the protocol specification accessibility requirement implies that
root nodes of attack requirements trees for other attacks such as for example social
engineering or physical intrusion are true. Similarly, the requirement of the possibility to
learn the protocol in use by target SCADA devices implies that the root nodes of attack
requirements trees for attacks such as sniffing and protocol reverse engineering are true.
In general sniffing and reverse engineering along with operational data are used to build
targeted attacks (Finco, Lee, Miller, Tebbe & Wells, 2006). Just like any other network
attack a SCADA protocol-based attack also requires that an attacker feeds attack

 6 – 8 S4: SCADA Security Scientific Symposium

messages to a target device, i.e. delivers through the network the attack messages to a
target device. Such a requirement in turn requires that an attacker should either possess
already physical access to a SCADA device, usually an IED considering that if an
attacker controls a MS there is no need to carry out an attack, or the root node of the
attack requirements tree of a physical attack against a SCADA device should be true. In
alternative the root node of the attack requirement tree for the attack which consists in
introducing a rogue device in the SCADA link media should be true. Nevertheless,
building attack messages in compliance with the protocol in use and delivering them to
target SCADA devices is not sufficient for a SCADA protocol-based attack to be
feasible. In fact due to any reason a target SCADA device could drop attack packets.
Therefore, in order for the root node of the attack requirements tree given in (Figure 1)
to be true target SCADA devices should process attack messages.

Obviously the general attack requirements tree given in (Figure 1) could be further
refined in front of relevant details of a defined SCADA environment and/or particular
circumstances under which a SCADA protocol-based attack may be carried out, such as
for example whether the SCADA network is wired or wireless, whether a default port is
used for a defined protocol rather than custom ports, whether the operating system of
SCADA devices provides for security including the physical one, whether the
specification of a proprietary SCADA protocol is kept and handled securely, etc. There
is a close relationship between attack trees and attack requirements trees. Most of the
nodes in an attack requirements tree for a defined attack may be generated upon
information contained in the attack tree of the aforementioned attack. On the other
hand although attack requirements trees were designed to mainly provide the basis for
proactive intrusion prevention approaches, they could help in assigning realistic
difficulty values to several nodes in an attack tree. Furthermore, attack requirements
trees complement attack trees in fully characterizing a given attack.

5 SCADA Protocol Obfuscation

5.1 The Approach

Seeking inspiration from biology, (Forrest, Somayaji & Ackley, 1997) investigatated the
possible advantages of diversity in computing systems, considering that diversity is
already a source of robustness in biological systems. (Forrest et al., 1997) followed
several guidelines they devised for their ongoing research such as introducing diversity
through randomization, introducing diversity in places that will be most disruptive to
attacks, minimizing costs and preserving high level functionality. They concluded that
diversity is valuable, and it can contribute to the development of more robust and secure
computing systems.

SCADA protocol obfuscation is a proactive intrusion prevention approach which
introduces diversity in the SCADA communication protocol employed by SCADA
systems for supervisory and control. SCADA protocol obfuscation aims at diversifying
a SCADA protocol in such a way that the actual obfuscated protocol is unique for each
single group of legitimate SCADA devices, and this while preserving the communication
functionality of the SCADA protocol.

SCADA Protocol Obfuscation 6 – 9

The SCADA protocol obfuscation approach consists of a reversible transformation of
each frame of a given SCADA protocol according to a defined obfuscation algorithm.
The obfuscation algorithm is to be shared between all legitimate SCADA devices in a
communication group and its implementation is composed of four components, namely
a transformation function, a key, a transformation scheme generator, and a key
generator (Figure 2). A transformation function obfuscates a regular SCADA protocol
message into an obfuscated message or vice versa, i.e. deobfuscates an obfuscated
message into a regular SCADA protocol message.

A transformation function is built through protocol obfuscation techniques such as
frame layout randomization and field set randomization described in Section 6 possibly
complemented by additional optional techniques. The logic of a transformation
function optionally includes the use of a key generally when stream cipher scrambling
(Section 6) is employed. The SCADA protocol obfuscation approach utilizes a
transformation function which is intentionally simple in its functionality and
implementable in a few lines of code. This is because a SCADA protocol obfuscation
approach should require low computing power, a fact which as we will see latter in this
section forms the basis of its very existence.

Figure 2 – Conceptual organization of a SCADA protocol obfuscation module

Due to its simplicity in both design and implementation, a transformation function
provides an obfuscation scheme which is quite weak and whose breaking is just a matter
of time. One of the main ideas behind SCADA protocol obfuscation approach which
aims at overcoming such a weakness is to enable Master Stations and Slave Stations to

 6 – 10 S4: SCADA Security Scientific Symposium

employ a certain transformation scheme for obfuscating their SCADA protocol
messages during a limited amount of time only, say t minutes. After t minutes protected
SCADA devices change the transformation scheme, thus for other s minutes they
employ a different transformation function for obfuscating their SCADA protocol
messages.

A transformation scheme can be simple to the degree of resisting for the limited amount
of time during which it is employed for obfuscating SCADA protocol messages.
Furthermore, the transformation function depends on a series of variables whose
modification allows for substantially changing the obfuscation scheme implemented by
such a function. The transformation scheme generator modifies the aforementioned
variables each time a SCADA device needs to change obfuscation scheme.

In the case the transformation function employs stream cipher scrambling (Section 6),
the key could be continuously varied for the purpose of making it less easy for an
attacker to derive the obfuscation scheme. In our experiments, for example, we
generated random key bytes by using an interface to the kernel's random number
generator for each packet to be sent. Thus, the fundamental idea is to vary two
structural components, namely a transformation function and a possible key in order to
compensate for weak obfuscation schemes. Assuming an attacker will spend some time
in breaking the obfuscation scheme and recovering the related key, if any, by the time he
is prepared to attack the protected SCADA devices, it may have changed both the
transformation scheme and the key.

We extend the Modbus messaging service conceptual architecture (Schneider
Automation, 2004) by introducing an additional module which implements the SCADA
protocol obfuscation approach, namely a Modbus obfuscation module (Figure 3). The
Modbus client interface provides an interface to the user application to demand the
creation of Modbus requests. The Modbus client builds a Modbus request as specified
by the user application and passes it to the Modbus obfuscation module. The Modbus
obfuscation module is an implementation of an obfuscation/deobfuscation algorithm
and is responsible for obfuscating outgoing Modbus messages and deobfuscating
incoming Modbus messages. After receiving the Modbus request from the Modbus
client the Modbus obfuscation module obfuscates it and returns it back to the Modbus
client which passes it to lower layers for transmission. The Modbus back-end interface
is an interface from the Modbus server to the user application.

The Modbus server waits for an incoming Modbus request on a certain TCP port. The
default TCP port for Modbus is 502. Upon receiving an incoming Modbus request the
Modbus server passes it to the Modbus obfuscation module. The later deobfuscates the
Modbus request and returns it to the Modbus server which in turn submits it to a
Modbus PDU checking function. The Modbus PDU checking function is responsible
for verifying that a Modbus message is fully compliant with the Modbus protocol. If the
deobfuscated message is a valid Modbus message the Modbus server processes it and
then possibly builds a Modbus response. If the deobfuscated message is not a valid
Modbus message it is dropped and not treated by the Modbus server at all. If the
Modbus server builds a Modbus response, such a response is first passed to the Modbus
obfuscation module which obfuscates it and returns it back to the Modbus server which

SCADA Protocol Obfuscation 6 – 11

in turn passes it to lower layers for transmission. The obfuscation capability would be
inserted into Modbus speaking devices with a set of functions that can be called by the
Modbus client and Modbus server. These functions will accordingly
obfuscate/deobfuscate Modbus messages by calling the Modbus obfuscation module.

Figure 3 – The Modbus Messaging Service Conceptual Architecture extended to
include SCADA Protocol Obfuscation capability

 6 – 12 S4: SCADA Security Scientific Symposium

5.2 Motivations Behind SCADA Protocol Obfuscation

Our objective is to use the information held in the attack requirements tree of a SCADA
protocol-based attack for the purpose of building a proactive intrusion prevention
approach which could make such attack infeasible. For this purpose we need a
mechanism for denying the AND node in the attack requirements tree of a SCADA
protocol-based attack which represents the condition that attack messages should be
built according to the SCADA protocol in use by target SCADA devices. A strong
cryptographic algorithm would be ideal for such a task, definitely. For instance,
legitimate SCADA devices could use asymmetric cryptography to exchange a
cryptographic key which they can use along with a symmetric cryptographic algorithm to
encrypt all their SCADA protocol messages. Although the key distribution in a SCADA
network would have been an issue, strong encryption would have ensured that an
attacker who does not know the encryption key would not be able to produce valid
attack messages. Furthermore, taking into account the strength of a cryptographic
algorithm, SCADA devices would have been reasonably protected from SCADA
protocol-based attacks.

Nevertheless, the majority of SCADA field devices such as PLC's or RTU's have limited
computational power, therefore such devices have noticeable difficulties in running
strong cryptographic algorithms. Furthermore, in some cases the kind of processor and
the amount of main memory in a SCADA field device does not allow for running a
strong cryptographic algorithm at all. On the other hand SCADA communications
should be real-time, therefore SCADA field devices are expected to carry out an action
specified by a received request and send a response within a reasonable time fragment.
We devised the SCADA protocol obfuscation approach to overcome such a problem,
while accepting the fact that the cryptographic protection that may be provided by
common processors in SCADA field devices is bounded, i.e. a cryptographic algorithm
that can be run by SCADA field devices would have to be weak due to their limited
computational power.

The SCADA protocol obfuscation approach provides a simple scrambling of SCADA
protocol frames and it requires little computational power, therefore it is quite
affordable by the kind of processors along with the amount of main memory in
common SCADA field devices. This means that the “encryption” protection provided
by SCADA protocol obfuscation will have to be weak, but we tried to deal with such a
limitation to make it possible that such a weakness does not affect the robustness of the
entire approach. The idea to cope with weak “encryption” protection consists in
enabling SCADA devices to use a defined scrambling scheme within a limited time
interval only, after which these devices change it. If an attacker will attempt to break a
currently used scrambling scheme he will need some time to gather obfuscated protocol
packets and analyze them. As the scrambling scheme is continuously changed, when an
attacker has broken a certain scrambling scheme the actual scrambling scheme may be
another scheme different than the broken scheme.

In the case of the SCADA protocol obfuscation approach, we may arguably talk about
scrambling or obfuscation algorithm. Arguably, we do not encrypt, we just scramble to

SCADA Protocol Obfuscation 6 – 13

keep aggressors off for a limited amount of time and we change scrambling scheme
from time to time in order to limit the exposure window of a scrambling algorithm that
has been broken. A SCADA protocol obfuscated through the approach described in
this paper is intended to be unique for each group of legitimate SCADA devices,
therefore an attacker who doesn't know the obfuscation scheme cannot produce valid
messages. Our choice of introducing diversity exactly in SCADA protocols is motivated
by the fact that such protocols are among the main instruments that attackers could use
to disrupt the underlying critical infrastructure monitored and controlled by SCADA
systems. Furthermore, each incoming message deobfuscated by legitimate SCADA
devices equipped with obfuscation capability is checked for the purpose of verifying that
it is fully in compliance with the SCADA protocol in use before being processed. These
checks lead to denial of the AND node in the attack requirements tree of a SCADA
protocol-based attack which represents the condition that targets should process attack
messages.

6 SCADA Protocol Obfuscation Techniques
In this section, the obfuscation techniques we employ in building a transformation
function within the SCADA protocol obfuscation approach are described. These
techniques are described as applied to the Modbus TCP/IP protocol which has been a
representative SCADA protocol for our general approach.

6.1 ADU Layout Randomization

ADU layout randomization was inspired by address space layout randomization (PaX
Team; Bhatkar, DuVarney & Sekar, 2003; Xu, Kalbarczyk & Iyer, 2003) used by
operating systems to counter attacks which exploit low-level coding vulnerabilities.
Address space layout randomization consists in randomizing the base address of the
memory area containing executable code, initialized data and uninitialized data, the base
address of the memory area containing the heap, dynamic libraries, thread stacks and
shared memory, the base address of the area containing the main stack, etc. An attacker
would find it difficult to build such an exploit while he does not know where certain
process components are located in main memory. If we build a parallelism between the
address space of a given process and the Modbus ADU, and between process
components and Modbus fields, we could follow the same approach by randomizing for
example the order in which various Modbus fields are placed in an ADU (Figure 4).
Generally the granularity at Modbus field level is not sufficient for building a robust
transformation function. Thus, ADU layout randomization could be extended at a
granularity of, for example, two bytes also for the data field while conserving the
functional integrity of some defined bytes, such as the high and low parts of various
addresses present in the data field.

 6 – 14 S4: SCADA Security Scientific Symposium

Figure 4 – Modbus TCP/IP request/response in A) an original layout and

B) a randomized layout at the granularity of a Modbus field.

6.2 Modbus Field Set Randomization

Modbus field set randomization was inspired by instruction set randomization
(Barrantes, Ackley, Forrest, Palmer, Stefanovic & Zovi, 2003; Kc, Keromytis &
Prevelakis, 2003). Instruction set randomization is a technique devised to counter code
injection attacks and aims at destroying the usability of binary code injected into the
address space of a protected process. The main idea behind instruction set
randomization consists in the creation of a randomized instruction set for each
protected process. These process specific instruction sets are kept secret from attackers.
If an attacker carries out a code injection attack against a protected process and doesn't
know the instruction set used by that process, then he does not know how to produce
machine code according to the instruction set of the protected process and will end up
with injecting invalid binary code. We can build a parallelism between instructions in an
instruction set used to talk to a machine and the Modbus fields used to talk to a Modbus
device. Moving along this line we can randomize the Modbus fields for the purpose of
achieving several randomized Modbus field sets.

Description Function Code Randomized Function Code

Read coils 0x1 0x17

Read discrete inputs 0x2 0x6

Read holding registers 0x3 0x0B

Read input registers 0x4 0x11

Write single coil 0x5 0x2B

Write single register 0x6 0x0F

Table 1 – An example of function code randomization

SCADA Protocol Obfuscation 6 – 15

Similarly, if an attacker does not know the Modbus field set used by a group of devices
in a SCADA network he cannot produce valid attack messages. The function code field
for instance is suitable for being randomized (Table 1). The same holds for sub-
function codes and error codes. Similarly addresses, quantities, byte counts, register and
output values, etc., in the data field could be randomized as well. The transaction
identifier could also help an attacker to identify the logic behind the transformation
function as the value of this field in a request is simply copied into the corresponding
response. Such a field is to be randomized into two values where one is to be used by
the client and the other one is to be used by the server. The same holds for the unit
identifier field. Furthermore, it is also necessary to masquerade some of the Modbus
fields for the purpose of producing an acceptably resistant transformation function. The
protocol identifier field for example in Modbus is always zero filled. If this field does
not get masqueraded it will appear as 0x0000 in each Modbus message where evidently it
is easily identifiable. By masquerading the protocol identifier field, we mean setting it to
an arbitrary value, which during de-obfuscation at the other end is to reset to zero. The
obfuscation algorithm however could use a single randomization map for all the fields to
be randomized.

6.3 Other Obfuscation Techniques

In the case of Modbus requests where the data field is of zero length it may be much
easier for an attacker to break the transformation function currently in use. In fact in
this case there are only 8 bytes in the Modbus ADU, 7 bytes of MBAP header + 1 byte
of function code. Thus, in such requests it may be constructive from the security point
of view to pad the data field with randomly generated bits. Furthermore, before
applying ADU layout randomization it may be helpful to allocate one or two bytes
between Modbus fields to be filled with random values. For the purpose of deceiving
an attacker and leading him to a wrong direction, it may be constructive from the
security point of view to put on the communication link NULL Modbus requests and
NULL Modbus responses, i.e. messages composed of randomly generated bits which
cause no effect on the receiving SCADA device. These NULL messages may cause
confusion in the attacker's analysis and consequently delay a possible break of the
transformation function currently in use.

Another obfuscation technique which could be employed in the creation of a
transformation function is stream cipher scrambling. It consists in introducing random
bits into a Modbus frame and XOR'ing determined Modbus fields with determined
random bits. Nevertheless, such a technique was considered too costly, therefore its
employment is not always possible or advantageous.

7 Pro’s and Con’s of SCADA Protocol Obfuscation
The main advantage behind SCADA protocol obfuscation derives from the fact that it is
a simple scrambling of SCADA protocol frames, consequently it requires little
computational power. Furthermore, such an approach is generally composed of simple
operations. The processors found in common SCADA field devices such as PLC's and
RTU's along with the amount of main memory available in these devices can run a

 6 – 16 S4: SCADA Security Scientific Symposium

reasonably structured instance of the SCADA protocol obfuscation approach. For
instance, a transformation function constructed as a combination of ADU layout
randomization and Modbus field set randomization imposes a performance cost around
0.8 % of the overall execution cost of a publicly available Modbus implementation in an
embedded Linux operating system running on a processor emulator. Under the same
testing platform a transformation function constructed as a combination of ADU layout
randomization, Modbus field set randomization, data padding, and insertion of random
bits between Modbus fields imposes a performance cost of around 1.3 % of the overall
execution cost. Applying a granularity of two bytes also for the data field in the ADU
layout randomization resulted in a performance cost between 1.4 % and 1.5 % of the
overall execution cost.

Often an master station is configured to periodically send commands, which are
specified in a configuration file, to slave stations. In these cases the key generator and
the transformation scheme generator components in slave stations prepare their
intervention to the transformation function during the period of time between the
moment a request has been fully processed and a possible response has been built and
sent, and the moment a successive request is received. Thus, generally only the cost of
the transformation function weighs on the real time nature of the communication
between SCADA devices. Furthermore, scrambling has some advantages with regard to
intrusion detection as it reduces the time needed to “decrypt” an “encrypted” SCADA
protocol packet for the purpose of analyzing it.

SCADA protocol obfuscation tries to make proper use of the low level of cryptographic
protection allowed by limited computational power in SCADA field devices. In fact
such an approach uses a certain transformation scheme only for a limited period of time,
after which it changes transformation scheme. Therefore a weak transformation scheme
does not necessarily imply weak protection against SCADA protocol-based attacks.

The main disadvantage of SCADA protocol obfuscation is that it considerably increases
the network overhead in a moment when many SCADA networks have limited
transmission capabilities. Obfuscation techniques such as data padding or insertion of
random bits between Modbus fields extend possibly small Modbus messages into a full
253 bytes Modbus PDU. Furthermore, each NULL Modbus request or NULL Modbus
response alone puts on the SCADA link exactly 260 bytes of a complete Modbus TCP
ADU plus the number of bytes introduced by lower layers in the OSI stack. As a
consequence SCADA protocol obfuscation is more suitable in TCP/IP networks where
network bandwidth is not a critical issue rather than in serial line networks.

The application of a SCADA protocol obfuscation approach in the defense of SCADA
devices from SCADA protocol-based attacks may be further constrained by the fact that
many companies pay for each single byte of communication between their SCADA
devices. Such is the case for example when their master stations communicate with field
devices over satellite which may be operated by external parties.

SCADA protocol obfuscation does not add any value more than strong encryption does
with respect to the high dependency on physical security in SCADA field devices. As a
matter of fact, a physical compromise of a SCADA field device would turn into true the
value of the node in the attack requirements tree which SCADA protocol obfuscation

SCADA Protocol Obfuscation 6 – 17

aims at denying. An attacker may break the physical security of a slave station and carry
out the attacks from there as the compromised PLC or RTU will obfuscate correctly the
attack packets sent by the attacker.

Furthermore, SCADA protocol obfuscation has its own critical point, i.e. the
transformation scheme generator. During our experiments we defined statically and
randomly the periodic modifications to the transformation scheme. It could be possible
to derive the next transformation scheme to be used by protected SCADA devices based
on information gathered from previous transformation schemes. In this case the entire
SCADA protocol obfuscation is considered broken.

8 Conclusion
In this paper we described a defensive approach, namely SCADA protocol obfuscation,
to counter SCADA protocol-based attacks launched from a rogue device introduced in a
SCADA network. Such an approach was structured as a proactive structural
intervention that we built upon information held by a new conceptual structure we
described in this paper as well, and which we refer to as attack requirements tree. This
tree is a structured means of providing conditions which must hold for a given attack to
be feasible, and each one of its nodes represents one of those conditions. We built an
attack requirements tree for a SCADA protocol-based attack and tried to make this
attack unfeasible by using SCADA protocol obfuscation to deny the node which
represents the requirement that attack messages should be built according to the
SCADA protocol in use. While a strong encryption algorithm could protect from
SCADA protocol-based attacks much better, common SCADA field devices such as
PLC's or RTU's have limited computational power and consequently are subject to
considerable difficulties in running strong cryptographic algorithms.

The SCADA protocol obfuscation approach provides a simple scrambling of SCADA
protocol frames. As a consequence such an approach requires little computational
power and is quite affordable by the kind of processors and the amount of main
memory found in common SCADA field devices. Due to the simplicity in both design
and implementation the transformation scheme in our approach is quite weak from a
security standpoint. In order to compensate for weak transformation schemes, SCADA
protocol obfuscation provides the mechanism for changing a transformation scheme
after a limited period of time. We build simple transformation schemes through
techniques such as ADU layout randomization and field set randomization following a
parallelism with address space layout randomization and instruction set randomization,
respectively. These obfuscation techniques are actually complemented by data padding,
field masquerading, insertion of random bits between Modbus fields, and when possible
stream cipher scrambling for the purpose of strengthening the transformation scheme
while remaining within the maximum possible level allowed by the limited
computational power of SCADA field devices.

 6 – 18 S4: SCADA Security Scientific Symposium

About the Authors – Carlo Bellettini works as an Associate Professor at Università degli Studi di
Milano, Italy (Department of Computer Science and Communication) since 2002. He holds a
Ph.D. in Computer Science from Università degli Studi di Milano, Italy (1998) and a laurea degree
in Electronic Engineering from Politecnico di Milano, Italy (1992). His research interests include
real-time systems, with particular reference to analysis of specification in high level Petri nets,
object-oriented design approaches and object-oriented component reusability, network security
and performance evaluation of computer systems and networks.

Julian L. Rrushi received a BS in Computer Science in 2003 and a MS in Information and
Communication Technology in 2005 from the University of Milan. He is actually a second year
PhD student of the University of Milan where he is doing research on SCADA security. While a
Master student he was awarded a research scholarship by (ISC)² for a project on mobile code and
security implications on servers, and an internship by the Joint Research Center of the European
Commission for preparing his Master thesis. His research interests are system and network
security.

SCADA Protocol Obfuscation 6 – 19

References
AGA 12 Task Group. (2006). Cryptographic Protection of SCADA Communications, Part 1:
Background, Policies and Test Plan. AGA Report Number 12.

Balducelli, C. (2003). Modeling Attack Scenarios Against Software Intensive Critical
Infrastructures. In Proceedings of the 10th Annual Conference of the International
Emergency Management Society, Sophia-Antipolis, Provence, France.

Balducelli, C., Vicoli, G., & Jin, Xuan. (2006). Formalizing and Testing Attack Scenarios for
Information Intensive Critical Infrastructures. Methodologies for Emerging Technologies in
Automation. University of Rome “La Sapienza”, Rome, Italy.

Bhatkar, S., DuVarney, D., & Sekar, R. (2003). Address obfuscation: An efficient approach to
combat a broad range of memory error exploits. In Proceedings of the 12th USENIX Security
Symposium, (pp. 105 - 120). Washington D.C., U.S.A.

Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanovic, D., & Zovi D.
(2003). Randomized instruction set emulation to disrupt binary code injection attacks, In
Proceedings of the 10th ACM Conference on Computer and Communications Security
(CCS2003). (pp. 281 - 289). Washington, U.S.A.

Bellettini, C., & Rrushi, J.L. (2006). FireBuff: A Defensive Approach Against Control-data and
Pure-data Attacks. Retrieved December 8, 2006, from
http://homes.dsi.unimi.it/~rrushi/firebuff

Byres, E. J., Franz, M., & Miller, D. (2004). The Use of Attack Trees in Assessing
Vulnerabilities in SCADA Systems, International Infrastructure Survivability Workshop,
IEEE, Lisbon, Portugal.

Byres, E. J., & Lowe, J. (2004). The Myths and Facts behind Cyber Security Risks for Industrial
Control Systems, VDE 2004 Congress, VDE, Berlin, Germany.

Convery, S., Cook, D. , & Franz, M. An Attack Tree for the Border Gateway Protocol,
Retrieved December 8, 2006, from http://www.io.com/~mdfranz/papers/draft-
convery-bgpattack-01.txt

Del Re, E., Fantacci, R., & Maffucci, D. (1989). A New Speech Signal Scrambling Method for
Secure Communications: Theory, Implementation, and Security Evaluation. IEE Journal on
Selected Areas in Communications, volume 7, number 4.

Finco, G., Lee, K., Miller, G., Tebbe, J., & Wells, R. (2006). Cyber Security Procurement
Language for Control Systems, Version 1.5 Draft. Prepared by Idaho National Laboratory
for the U.S. Department of Homeland Security, National Cyber Security Division.
Retrieved December 1, 2006, from http://www.msisac.org/scada/documents/16nov06-
scada-procurement_.pdf

Forrest, S., Somayaji, A., & Ackley, D. (1997). Building diverse computer systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating Systems. (pp. 67 - 72).
Cape Cod, Massachusetts, U.S.A.

 6 – 20 S4: SCADA Security Scientific Symposium

Kc, G.S., Keromytis, A.D., & Prevelakis V. (2003). Countering code injection attacks with
instruction set randomization, In Proceedings of the 10th ACM Conference on Computer
and Communications Security. (pp. 272 - 280). Washington, U.S.A.

Li, T., Ren, J., Ling, Q., & Liang, W. (2004). Physical Layer Built-in Security Analysis and
Enhancement of CDMA Systems. Proceedings of 2004 Conference on Information Sciences
and Systems, University of Princeton, Princeton, NJ.

MODBUS Organization. (2004). MODBUS Application Protocol Specification V 1.1a.
Retrieved December 1, 2006, from
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1a.pdf

Schneider Automation. (2004). MODBUS Messaging on TCP/IP Implementation Guide
V1.0a, Retrieved December 1, 2006, from
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0a.pd
f

PaX Team, Documentation for the PaX project. Retrieved December 1, 2006, from
http://pax.grsecurity.net/docs

Scheyner, O. (2004). Scenario Graphs and Attack Graphs. PhD thesis, Carnegie Mellon
University. Retrieved December 8, 2006, from http://www.milena.org/thesis/sg-ag.pdf

Schneier, B. (1999). Attack Trees. Dr Dobbs Journal. Retrieved December 8, 2006, from
http://www.schneier.com/paper-attacktrees-ddj-ft.html

Stamp, J., Dillinger, J., Young W., & DePoy, J. (2003). Common Vulnerabilities In Critical
Infrastructure Control Systems, Sandia National Laboratories, Albuquerque, NM.

U.S. Nuclear Regulatory Commission. (1981). Fault Tree Handbook. Retrieved December
8, 2006, from
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf

Xu, H., Chapin, S.J. (2006). Improving Address Space Randomization with a Dynamic Offset
Randomization Technique. (pp. 384 - 391). ACM Symposium on Applied Computing,
Dijon, France.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

